Skip to main content
Log in

Nanoparticulate BaTiO3 film produced by aerosol-type nanoparticle deposition

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Aerosol-type nanoparticle deposition (NPD) is a magical method to form a dense electroceramic film with a fine, nanoscale structure on a substrate surface by depositing ceramic particles through a nozzle at room temperature. This film has the potential to be applied to various electronic, environmental, and energy devices. However, the deposition mechanism and the nanostructure in the film are not understood sufficiently. This study aimed at investigating the crystal structure of an NPD as-deposited film, and compared the crystal structures of the NPD as-deposited film, annealed film, and the raw powders consisting of particles with diameters of 200 and 50 nm, respectively, using barium titanium oxide (BaTiO3). We found that the crystal in BaTiO3 with a disordered phase due to the Ba displacement within the BaTiO3 was responsible for the adhesion between the BaTiO3 crystalline particles having a diameter of approximately 10 nm, as well as with the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akdogan EK, Safari A (2007) Thermodynamic theory of intrinsic finite-size effects in PbTiO3 nanocrystals. I. Nanoparticle size-dependent tetragonal phase stability. J Appl Phys 101:064114

    Article  Google Scholar 

  • Akedo J (2006) Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers. J Am Ceram Soc 89:1834–1839

    Article  Google Scholar 

  • Ayouchi R, Martin F, Ramos-Barrado JR, Leinen D (2000) Compositional, structural and electrical characterization of barium titanate thin films prepared on fused silica and Si(111) by spray pyrolysis. Surf Interface Anal 30:565–569

    Article  Google Scholar 

  • Buscaglia V, Buscaglia MT, Vivani M, Mitoseriu L, Nanni P, Terfiletti V, Piaggio P, Gregora I, Ostapchuk T, Pokorny J, Petzelt J (2006) Grain size and grain boundary-related effects on the properties of nanocrystalline barium titanate ceramics. J Eur Ceram Soc 26:2889–2898

    Article  Google Scholar 

  • Christie AB, Lee J, Sutherland I, Walls JM (1983) An XPS study of ion-induced compositional changes with group II and group IV compounds. Appl Surf Sci 15:224–237

    Article  Google Scholar 

  • Fong DD, Stephenson GB, Streiffer SK, Eastman JA, Auciello O, Fuoss PH, Thompson C (2004) Ferroelectricity in ultrathin perovskite films. Science 304:1650–1653

    Article  Google Scholar 

  • Frenkel AI, Feldman Y, Lyahovitskaya V, Wachtel E, Lubomirsky I (2005) Microscopic origin of polarity in quasiamorphous BaTiO3. Phys Rev B 71:024116

    Article  Google Scholar 

  • Frey MH, Payne DA (1996) Grain-size effect on structure and phase transformations for barium titanate. Phys Rev B 54:3158–3168

    Article  Google Scholar 

  • Ghosez Ph, Rabe KM (2000) Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films. Appl Phys Lett 76:2767–2769

    Article  Google Scholar 

  • Herbert JM (1985) Ceramic dielectrics and capacitors. Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Hoshina T, Kakemoto H, Tsurumi T, Wada S, Yashima M (2006) Size and temperature induced phase transition behaviors of barium titanate nanoparticles. J Appl Phys 99:054311

    Article  Google Scholar 

  • Imanaka Y, Amada H, Kumasaka F, Takahashi N, Yamasaki T, Ohfuchi M, Kaneta C (2013a) Nanoparticulated dense and stress-free ceramic thick film for material integration. Adv Eng Mater 15:1129–1135

    Article  Google Scholar 

  • Imanaka Y, Amada H, Kumasaka F (2013b) Dielectric and insulating properties of embedded capacitor for flexible electronics prepared by aerosol-type nanoparticle deposition. Jpn J Appl Phys 52:05DA02

    Article  Google Scholar 

  • Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics, vol 3. Academic Press, London

    Google Scholar 

  • Kishi H, Mizuno Y, Chazono H (2003) Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn J Appl Phys 42:1–15

    Article  Google Scholar 

  • Kraizman VL, Novakovich AA, Vedrinskii RV, Timoshevskii VA (1995) Formation of the pre-edge structure and dramatic polarization dependence of Ti K NEXAFS in PbTiO3 crystals. Phys B 208–209:35–36

    Article  Google Scholar 

  • Leinen D, Fernández A, Espinós JP, González-Elipe AR (1996) Chemical effects in TiO2 and titanates due to bombardment with Ar+ and O2+ ions of different energies (3.5–10 keV). App Phys A Mater 63:237–242

    Google Scholar 

  • Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Oxford University Press, New York

    Google Scholar 

  • Meyer B, Vanderbilt D (2001) Ab initio study of BaTiO3 and PbTiO3 surfaces in external electric fields. Phys Rev B 63:205426

    Article  Google Scholar 

  • Miot C, Husson E, Proust C, Erre R, Coutures JP (1997) X-ray photoelectron spectroscopy characterization of barium titanate ceramics prepared by the citric route. Residual carbon study. J Mater Res 12:2388–2392

    Article  Google Scholar 

  • Mukhopadhyay SM, Chen TCS (1995) Surface chemical states of barium titanate: influence of sample processing. J Mater Res 10:1502–1507

    Article  Google Scholar 

  • Pennycook SJ, Jesson DE (1991) High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37:14–38

    Article  Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  Google Scholar 

  • Ravel B, Stern EA (1995) Local disorder and near edge structure in titanate perovskites. Phys B 208–209:316–318

    Article  Google Scholar 

  • Ravel B, Stern EA, Vedrinskii RI, Kraizman V (1998) Local structure and the phase transitions of BaTiO3. Ferroelectrics 206:407–430

    Article  Google Scholar 

  • Sakabe Y (1987) Dielectric materials for base-metal multilayer ceramic capacitors. Am Ceram Soc Bull 66:1338–1341

    Google Scholar 

  • Smith MB, Page K, Siegrist T, Redmond PL, Walter EC, Seshadri R, Brus LE, Steigerwald ML (2008) Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J Am Chem Soc 130:6955–6963

    Article  Google Scholar 

  • Spanier JE, Kolpak AM, Urban JJ, Grinberg I, Ouyang L, Yun WS, Rappe AM, Park H (2006) Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett 6:735–739

    Article  Google Scholar 

  • Strukov BA, Levanyuk AP (1998) Ferroelectric Phenomena in Crystals. Springer, Berlin

    Book  Google Scholar 

  • Vedrinskii RV, Kraizman VL, Novakovich AA, Demekhin PhV, Urazhdin SV (1998) Pre-edge fine structure of the 3d atom K X-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals. J Phys Condens Mat 10:9561–9580

    Article  Google Scholar 

  • Wang CL, Smith SRP (1995) Landau theory of the size-driven phase transition in ferroelectrics. J Phys Condens Mat 7:7163–7171

    Article  Google Scholar 

  • Yang GY, Dickey EC, Randall CA (2003) Modulated and ordered defect structures in electrically degraded Ni–BaTiO3 multilayer ceramic capacitors. J Appl Phys 94:5990–5996

    Article  Google Scholar 

  • Yashima M, Hoshina T, Ishimura D, Kobayashi S, Nakamura W, Tsurumi T, Wada S (2005) Size effect on the crystal structure of barium titanate nanoparticles. J Appl Phys 98:014313

    Article  Google Scholar 

  • Zhao Z, Buscaglia V, Vivani M, Buscaglia MT, Mitoseriu L, Testino A, Nygren M, Johnsson M, Nanni P (2004) Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys Rev B 70:024107

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work was conducted in the Research Hub for Advanced Nano Characterization at The University of Tokyo, and part of this work was supported by “Nanotechnology Platform” (Project No. 12024046), both sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Imanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imanaka, Y., Amada, H., Kumasaka, F. et al. Nanoparticulate BaTiO3 film produced by aerosol-type nanoparticle deposition. J Nanopart Res 18, 102 (2016). https://doi.org/10.1007/s11051-016-3407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3407-0

Keywords

Navigation