Skip to main content
Log in

Luminescent Ag-doped In2S3 nanoparticles stabilized by mercaptoacetate in water and glycerol

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Colloidal nanoparticles (NPs) of tetragonal β-In2S3 were stabilized in water and glycerol by mercaptoacetate anions. Doping of In2S3 NPs with AgI cations at the time of the synthesis imparts the NPs with the photoluminescence (PL) in the visible part of the spectrum. The doping results also in a shift of the absorption threshold and the PL band maximum to longer wavelengths proportional to the AgI content. The PL band maximum of AgI-doped In2S3 NPs can be varied from 575–580 to 760–765 nm by augmenting the silver(I) amount and the duration and temperature of the post-synthesis aging. The average radiative life-time of AgI-doped In2S3 NPs also depends on the silver(I) content and reaches the maximal value, 960 ns, at a molar Ag:In ratio of 1:4. The maximal quantum yield of stationary PL, 12 %, is observed at this Ag:In ratio as well. Deposition of a ZnS “shell” on the surface of AgI-doped In2S3 NPs results in an increase of the PL quantum yield to ~30 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chang W, Wu C, Jeng M, Cheng K, Huang C, Lee T (2010) Ternary Ag–In–S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications. Mater Chem Phys 120:307–312

    Article  Google Scholar 

  • Chang J, Wang G, Cheng C, Lin W, Hsu J (2012) Strategies for photoluminescence enhancement of AgInS2 quantum dots and their application as bioimaging probes. J Mater Chem 22:10609–10618

    Article  Google Scholar 

  • Chen W, Bovin J, Joly A, Wang S, Su F, Li G (2004) Full-color emission from In2S3 and In2S3: Eu3+ nanoparticles. J Phys Chem B 108:11927–11934

    Article  Google Scholar 

  • Du W, Qian X, Yin J, Gong Q (2007) Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy. Chem Eur J 13:8840–8846

    Article  Google Scholar 

  • Dzhagan V, Valakh M, Raevskaya A, Stroyuk A, Kuchmiy S, Zahn (2008) Characterization of semiconductor core–shell nanoparticles by resonant Raman scattering and photoluminescence spectroscopy. Appl Surf Sci 255:725–727

    Article  Google Scholar 

  • Dzhagan V, Valakh M, Raevskaya A, Stroyuk O, Kuchmiy S, Zahn D (2009) The influence of shell parameters on phonons in core–shell nanoparticles: a resonant Raman study. Nanotechnol 20:365704

    Article  Google Scholar 

  • Hamanaka Y, Ozawa K, Kuzuya T (2014) Enhancement of donor–acceptor pair emissions in colloidal AgInS2 quantum dots with high concentration of defects. J Phys Chem C 118:14562–14568

    Article  Google Scholar 

  • Han J, Liu Z, Guo K, Ya J, Zhao Y, Zhang X, Hong T, Liu J (2014) High-efficiency AgInS2-modified ZnO nanotube array photoelectrodes for all-solid-state hybrid solar cells. ACS Appl Mater Interfaces 6:17119–17125

    Article  Google Scholar 

  • Kamat P, Tvrdy K, Baker D, Radich J (2010) Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 110:6664–6688

    Article  Google Scholar 

  • Klostranec J, Chan W (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964

    Article  Google Scholar 

  • Kolny-Olesiak J, Weller H (2013) Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl Mater Interfaces 5:12221–12237

    Article  Google Scholar 

  • Kryukov A, Zinchuk N, Korzhak A, Stroyuk A, Kuchmiy S (2004) Optical and catalytic properties of Ag2S nanoparticles. J Mol Catal A 221:209–221

    Article  Google Scholar 

  • Li X, Niu J, Shen H, Xu W, Wang H, Li L (2010) Shape controlled synthesis of tadpole-like and heliotrope seed-like AgInS2 nanocrystals. CrystEngComm 12:4410–4415

    Article  Google Scholar 

  • Li K, Xu J, Zhang X, Peng T, Li X (2013) Low-temperature preparation of AgIn5S8/TiO2 heterojunction nanocomposite with efficient visible-light-driven hydrogen production. Inter J Hydrog Energy 38:15965–15975

    Article  Google Scholar 

  • Liu L, Hu R, Law W, Roy I, Zhu J, Ye L, Hu S, Zhang X, Yong K (2013) Optimizing the synthesis of red- and near-infrared CuInS2 and AgInS2 semiconductor nanocrystals for bioimaging. Analyst 138:6144–6153

    Article  Google Scholar 

  • Nagesha D, Liang X, Mamedov A, Gainer G, Eastman M, Giersig M, Song J, Ni T, Kotov N (2001) In2S3 nanocolloids with excitonic emission: In2S3 vs CdS comparative study of optical and structural characteristics. J Phys Chem B 105:7490–7498

  • Park K, Jang K, Son S (2006) Synthesis, optical properties, and self-assembly of ultrathin hexagonal In2S3 nanoplates. Angew Chem Int Ed 45:4608–4612

    Article  Google Scholar 

  • Peng E, Choo E, Tan C, Tang X, Sheng Y, Xue J (2013) Multifunctional PEGylated nanoclusters for biomedical applications. Nanoscale 5:5994–6005

    Article  Google Scholar 

  • Rao M, Shibata T, Chattopadhyay S, Nag A (2014) Origin of photoluminescence and XAFS study of (ZnS)1–x(AgInS2)x Nanocrystals. J Phys Chem Lett 5:167–173

    Article  Google Scholar 

  • Rühle S, Shalom M, Zaban A (2010) Quantum-dot-sensitized solar cells. ChemPhysChem 11:2290–2304

    Article  Google Scholar 

  • Sasamura T, Okazaki K, Kudo A, Kuwabata S, Torimoto T (2012) Photosensitization of ZnO rod electrodes with AgInS2 nanoparticles and ZnS-AgInS2 solid solution nanoparticles for solar cell applications. RSC Adv 2:552–559

    Article  Google Scholar 

  • Talapin D, Lee J, Kovalenko M, Shevchenko E (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458

    Article  Google Scholar 

  • Tang X, Ho W, Xue J (2012) Synthesis of Zn-doped AgInS2 nanocrystals and their fluorescence properties. J Phys Chem C 116:9769–9773

    Article  Google Scholar 

  • Tian L, Vittal J (2007) Synthesis and characterization of ternary AgInS2 nanocrystals by dual- and multiple-source methods. New J Chem 31:2083–2087

    Article  Google Scholar 

  • Torimoto T, Ogawa S, Adachi T, Kameyama T, Okazaki K, Shibayama T, Kudo A, Kuwabata S (2010) Remarkable photoluminescence enhancement of ZnS–AgInS2 solid solution nanoparticles by post-synthesis treatment. Chem Commun 46:2082–2084

    Article  Google Scholar 

  • Torimoto T, Tada M, Dai M, Kameyama T, Suzuki S, Kuwabata S (2012) Tunable photo-electrochemical properties of chalcopyrite AgInS2 nanoparticles size-controlled with a photoetching technique. J Phys Chem C 116:21895–21902

    Article  Google Scholar 

  • Torimoto T, Kameyama T, Kuwabata S (2014) Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions. J Phys Chem Lett 5:336–347

    Article  Google Scholar 

  • Xiang W, Xie C, Wang J, Zhong J, Liang X, Yang H, Luo L, Chen Z (2014) Studies of highly luminescent AgInS2 and Ag–Zn–In–S quantum dots. J Alloys Compd 588:114–121

    Article  Google Scholar 

  • Xiong W, Yang G, Wu X, Zhu J (2013) Microwave-assisted synthesis of highly luminescent AgInS2/ZnS nanocrystals for dynamic intracellular Cu(II) detection. J Mater Chem 1:4160–41659

    Article  Google Scholar 

  • Yin J, Jia J, Yi G (2013) Synthesis and photoelectric applications of AgInS2 clusters. Mater Lett 111:85–88

    Article  Google Scholar 

  • Zhang W, Li D, Chen Z, Sun M, Li W, Lin Q, Fu X (2011) Microwave hydrothermal synthesis of AgInS2 with visible light photocatalytic activity. Mater Res Bull 46:975–982

    Article  Google Scholar 

  • Zhong H, Bai Z, Zou B (2012) Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications. J Phys Chem Lett 3:3167–3175

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. I. Kotenko (L.V. Pysarzhevsky Institute of Physical Chemistry of NASU, Kyiv, Ukraine) and Dr. S. Schulze (Institute of Physics, Technical University of Chemnitz, Germany) for TEM and SAED results and M. Skoryk (LLC Nanomedtech, Kyiv, Ukraine) for SEM and EDX data. The financial support of State Fund for Fundamental Research of Ukraine (Project No. Ф53.3/019) and National Academy of Sciences of Ukraine (Joint Projects of NASU and Siberian Branch of RAS Nos 07-03-12 Ukr and 49-02-14(U)) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr L. Stroyuk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 448 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raevskaya, A.E., Ivanchenko, M.V., Stroyuk, O.L. et al. Luminescent Ag-doped In2S3 nanoparticles stabilized by mercaptoacetate in water and glycerol. J Nanopart Res 17, 135 (2015). https://doi.org/10.1007/s11051-015-2953-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2953-1

Keywords

Navigation