Skip to main content
Log in

Determining the count median diameter of nanoaerosols by simultaneously measuring their number and lung-deposited surface area concentrations

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Due to the increasing use of nanomaterials in research and product development, it is probable that the number of situations of occupational exposure to them is also rising. The same is true for the number of workers. Although current research in nanotoxicology is far from conclusive, it is clear that relying on mass concentration and chemical composition alone is not appropriate in all cases and alternative measurement methods and approaches need to be developed. In this work, we propose a method based on simultaneous size-integrated measurements of two particle concentrations (number and lung-deposited surface area, CNC/NSAM), and on the estimation of the average size of potentially inhaled particles from the combination of these measurements. The proposed method could be part of a measurement strategy that is practical as it would use field-portable, commercially available aerosol instruments. In the absence of instruments providing real-time size-resolved measurements, this original approach can be carried out as considering that the ratio of these concentrations is a monotonous function of particle size. Indeed, the latter function depends only on the geometric standard deviation of airborne particle number size distribution, assumed to be lognormal. Compared to SMPS data for polydisperse aerosols having three chemical natures with count median diameters ranging from 64 to 177 nm, experimental results were obtained with acceptable relative discrepancies of ±30 %. Though the method proposed is less accurate than traditional instruments like SMPS, it can be used for workplace air monitoring or as a screening tool to detect the presence of airborne nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Asbach C, Fissan H, Stahlmecke B, Kuhlbusch TAJ, Pui DYH (2009a) Conceptual limitations and extensions of lung-deposited nanoparticle surface area monitor (NSAM). J Nanopart Res 11:101–109

    Article  Google Scholar 

  • Asbach C, Kaminski H, Fissan H, Monz C, Dahmann D, Mülhopt S, Paur HR, Kiesling HJ, Herrmann F, Voetz M, Kuhlbusch TAJ (2009b) Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. J Nanopart Res 11:1593–1609

    Article  Google Scholar 

  • Bau S, Witschger O, Gensdarmes F, Thomas D (2009) Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles. J Phys 170:012006. doi:10.1088/1742-6596/170/1/012006

    Google Scholar 

  • Bau S, Witschger O, Gensdarmes F, Thomas D (2011) Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes. J Phys 304:012015. doi:10.1088/1742-6596/304/1/012015

    Google Scholar 

  • Bau S, Witschger O, Gensdarmes F, Thomas D (2012) Evaluating three direct-reading instruments based on diffusion charging to measure surface area concentrations in polydisperse nanoaerosols in molecular and transition regimes. J Nanopart Res 14:1217–1233

    Article  Google Scholar 

  • Brouwer D, Van Duuren-Stuurman B, Berges M, Jankowska E, Bard D, Mark D (2009) From workplace air measurement results towards estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects. J Nanopart Res 11:1867–1881

    Article  CAS  Google Scholar 

  • Fierz M, Houle C, Steigmeier P, Burtscher H (2011) Design, calibration, and field performance of a miniature diffusion size classifier. Aerosol Sci Technol 45:1–10

    Article  CAS  Google Scholar 

  • Fissan H, Neumann S, Trampe A, Pui DYH, Shin WG (2007) Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. J Nanopart Res 9:53–59

    Article  Google Scholar 

  • Harris SJ, Maricq MM (2001) Signature size distributions for diesel and gasoline engine exhaust particulate matter. Aerosol Sci Technol 32:749–764

    Article  CAS  Google Scholar 

  • Hatch T, Choate SP (1929) Statistical description of the size properties of non-uniform particulate substances. J Franklin Inst 207:369–387

    Article  Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, behavior and measurement of airborne particles, 2nd edn. Wiley, New York, p 483

    Google Scholar 

  • ICRP (1994) Publication 66: human respiratory tract model for radiological protection. Pergamon, Oxford

    Google Scholar 

  • Jacoby J, Bau S, Witschger O (2011) CAIMAN: a versatile facility to produce aerosols of nanoparticles. J Phys 304:012014. doi:10.1088/1742-6596/304/1/012014

    Google Scholar 

  • John W (2001) Size distribution characteristics of aerosols. In: Baron PA, Willeke K (eds) Aerosol measurement: principles, techniques and applications, 2nd edn. Wiley, New York, pp 99–116

    Google Scholar 

  • Joshi M, Sapra BK, Khan A, Tripathi SN, Shamjad PM, Gupta T, Mayya YS (2012) Harmonisation of nanoparticle concentration measurements using Grimm and TSI scanning mobility particle sizers. J Nanopart Res 14:1268–1281

    Article  Google Scholar 

  • Kallinger P, Steiner G, Szymanski WW (2012) Characterization of four different bipolar charging devices for nanoparticle charge conditioning. J Nanopart Res 14:944–951

    Article  Google Scholar 

  • Kaminski H, Kuhlbusch TAJ, Rath S, Götz U, Sprenger M, Wels D, Polloczek J, Bachmann V, Dziurowitz N, Kiesling HJ, Schwiegelsohn A, Monz C, Dahmann D, Asbach C (2013) Comparability of mobility particle sizers and diffusion chargers. J Aerosol Sci 57:156–178

    Article  CAS  Google Scholar 

  • Lall AA, Friedlander SK (2006) On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: I theoretical analysis. J Aerosol Sci 37:260–271

    Article  CAS  Google Scholar 

  • Leskinen J, Joutsensaari J, Lyyränen J, Koivisto J, Ruusunen J, Järvelä M, Tuomi T, Hämeri K, Auvinen A, Jokiniemi J (2012) Comparison of nanoparticle measurement instruments for occupational health applications. J Nanopart Res 14:718–733

    Article  Google Scholar 

  • Marra J, Voetz M, Kiesling HJ (2010) Monitor for detecting and assessing exposure to airborne nanoparticles. J Nanopart Res 12:21–37

    Article  CAS  Google Scholar 

  • Mavrocordatos D, Perret D, Leppard GG (2007) Strategies and advances in the characterisation of environmental colloids by electron microscopy. In: Wilkinson KJ, Lead JR (eds) Environmental colloids: behaviour, structure and characterization, IUPAC series on analytical and physical chemistry of environmental systems, vol 10. Wiley, Chichester, pp 345–396

    Chapter  Google Scholar 

  • Maynard AD (2003) Estimating aerosol surface-area from number and mass concentration measurements. Ann Occup Hyg 47:123–144

    Article  Google Scholar 

  • Meier R, Clark K, Riediker M (2012) Comparative testing of a miniature diffusion size classifier to assess airborne ultrafine particles under field conditions. Aerosol Sci Technol 47:22–28

    Article  Google Scholar 

  • Methner M, Hodson L, Geraci C (2010) Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—part A. J Occup Environ Hyg 7:127–132

    Article  CAS  Google Scholar 

  • Mills JB, Park JH, Peters TM (2013) Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols. J Occup Environ Hyg 10(5):250–258

    Article  CAS  Google Scholar 

  • NCRP (1997) Deposition, retention and dosimetry of inhaled radioactive substances, Report S.C. 57-2, NCRP, Bethesda, MD

  • Ntziachristos L, Polidori A, Phuleria H, Geller MD, Sioutas C (2007) Application of diffusion charger to the measurement of particle surface concentration in different environments. Aerosol Sci Technol 41:571–580

    Article  CAS  Google Scholar 

  • Park D, An M, Hwang J (2007a) Development and performance test of a unipolar diffusion charger for real-time measurements of submicron aerosol particles having a log-normal size distribution. J Aerosol Sci 38:420–430

    Article  CAS  Google Scholar 

  • Park D, Kim S, An M, Hwang J (2007b) Real-time measurement of submicron aerosol particles having a lognormal size distribution by simultaneously using unipolar diffusion charger and unipolar field charger. J Aerosol Sci 38:1240–1245

    Article  CAS  Google Scholar 

  • Park JY, Raynor PC, Maynard AD, Eberly LE, Ramachandran G (2009) Comparison of two estimation methods for surface area concentration using number concentration and mass concentration of combustion-related ultrafine particles. Atmos Environ 43:502–509

    Article  CAS  Google Scholar 

  • Park JY, Ramachandran G, Raynor PC, Kim SW (2011) Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations. J Nanopart Res 13:4897–4911

    Article  CAS  Google Scholar 

  • Ramachandran G, Ostraatb M, Evans DE, Methner MM, O’Shaughnessy P, D’Arcy J, Geraci CL, Stevenson E, Maynard AD, Rickabaugh K (2011) A strategy for assessing workplace exposures to nanomaterials. J Occup Environ Hyg 8:673–685

    Article  Google Scholar 

  • Shin WG, Pui DYH, Fissan H, Neumann S, Trampe A (2007) Calibration and numerical simulation of nanoparticle surface area monitor (TSI model 3550 NSAM). J Nanopart Res 9:61–69

    Article  CAS  Google Scholar 

  • Wang J, Asbach C, Fissan H, Hülser T, Kuhlbusch TAJ, Thompson D, Pui DYH (2011) How can nanobiotechnology oversight science and industry: examples from environmental, health, and safety studies of nanoparticles (nano-EHS). J Nanopart Res 13:1373–1387

    Article  Google Scholar 

  • Watson JG, Chow JC, Sodeman DA, Lowenthal DH, Chang MCO, Park K, Wang X (2011) Comparison of four scanning mobility particle sizers at the Fresno Supersite. Particuology 9:204–209

    Article  Google Scholar 

  • Witschger O, LeBihan O, Reynier M, Durand C, Marchetto A, Zimmermann E, Charpentier D (2012) Préconisations en matière de caractérisation des potentiels d’émission et d’exposition professionnelle aux aérosols lors d’opérations mettant en œuvre des nanomatériaux. Hygiène et Sécurité au Travail 226:41–55 (in French)

    CAS  Google Scholar 

  • Woo KS, Chen DR, Pui DYH, Wilson WE (2001) Use of continuous measurements of integral aerosol parameters to estimate particle surface area. Aerosol Sci Technol 34:57–65

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bau, S., Witschger, O., Gensdarmes, F. et al. Determining the count median diameter of nanoaerosols by simultaneously measuring their number and lung-deposited surface area concentrations. J Nanopart Res 15, 2104 (2013). https://doi.org/10.1007/s11051-013-2104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2104-5

Keywords

Navigation