Skip to main content

Advertisement

Log in

Cellular uptake of fluorophore-labeled glyco-DNA–gold nanoparticles

Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

DNA-functionalized gold nanoparticles (AuNP–DNA) were hybridized with complementary di-N-acetyllactosamine-(di-LacNAc, [3Gal(β1-4)GlcNAc(β1-]2)-modified oligonucleotides to form glycol-functionalized particles, AuNP–DNA–di-LacNAc. While AuNP–DNA are known to be taken up by cells via scavenger receptors, glycol-functionalized particles have shown to be taken up via asialoglycoprotein receptors (ASGP-R). In this work, the interaction of these new particles with HepG2 cells was analyzed, which express scavenger receptors class B type I (SR-BI) and ASGP-R. To study the contribution of these receptors as potential mediators for cellular uptake, receptor-blocking experiments were performed with d-lactose, a ligand for ASGP-R, Fucoidan, a putative ligand for SR-BI, and a SR-BI blocking antibody. Labeling with Cy5-modified DNA ligands enabled us to monitor the particle uptake by confocal fluorescence microscopy and flow cytometry, in order to discriminate the two putative pathways by competitive binding studies. While SR-BI-antibody and d-lactose had no inhibiting effects on particle uptake Fucoidan led to a complete inhibition. Thus, a receptor-mediated uptake by the two receptors studied could not be proven and therefore other uptake mechanisms have to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Acuna GP, Bucher M, Stein IH, Steinhauer C, Kuzyk A, Holzmeister P, Schreiber R, Moroz A, Stefani FD, Liedl T, Simmel FC, Tinnefeld P (2012) Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. ACS Nano 6:3189–3195

    Article  CAS  Google Scholar 

  • Arnáiz B, Martínez-Ávila O, Falcon-Perez JM, Penadés S (2012) Cellular uptake of gold nanoparticles bearing HIV gp120 oligomannosides. Bioconjug Chem 23:814–825

    Article  Google Scholar 

  • Bergen JM, von Recum HA, Goodman TT, Massay AP, Pun SH (2006) Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol Biosci 6:506–516

    Article  CAS  Google Scholar 

  • Biessen EA, Vietsch H, Rump ET, Fluiter K, Kuiper J, Bijsterbosch MK, von Berkel TJC (1999) Targeted delivery of oligodeoxynucleotides to parenchymal liver cells in vivo. Biochem J 340:783–792

    Article  CAS  Google Scholar 

  • Dong P, Xie T, Zhou X, Hu W, Chen Y, Duan Y, Li X, Han J (2011) Induction of macrophage scavenger receptor type BI expression by tamoxifen and 4-hydroxytamoxifen. Atherosclerosis 218:435–442. doi:10.1016/j.atherosclerosis.2011.06.048

    Article  CAS  Google Scholar 

  • Drickamer K, Taylor ME (1993) Biology of animal lectins. Annu Rev Cell Biol 9:237–264

    Article  CAS  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  • Gallo J, Genicio N, Penadés S (2012) Uptake and intracellular fate of fluorescent-magnetic glyco-nanoparticles. Adv Healthcare Mater 1:302–307

    Article  CAS  Google Scholar 

  • Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7:3818–3821

    Article  CAS  Google Scholar 

  • Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 131:2072–2073

    Article  CAS  Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49:3280–3294

    Article  CAS  Google Scholar 

  • Hangeland JJ, Flesher JE, Deamond SF, Lee YC, Ts’O PO, Frost JJ (1997) Tissue distribution and metabolism of the [32P]-labeled oligodeoxynucleoside methylphosphonate-neoglycopeptide conjugate, [YEE(ah-GalNAc)3]-SMCC-AET-pUmpT7, in the mouse. Antisense Nucleic Acid Drug Dev 7:141–149

    Article  CAS  Google Scholar 

  • He H, MacKinnon KM, Genovese KJ, Nerren JR, Swaggerty CL, Nisbet DJ, Kogut MH (2009) Chicken scavenger receptors and their ligand-induced cellular immune responses. Mol Immunol 46:2218–2225

    Article  CAS  Google Scholar 

  • Huang G, Diakur J, Xu Z, Wiebe LI (2008) Asialoglycoprotein receptor-targeted superparamagnetic iron oxide nanoparticles. Int J Pharm 360:197–203

    Article  CAS  Google Scholar 

  • Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318

    Article  CAS  Google Scholar 

  • Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40:195–205

    Article  Google Scholar 

  • Kanaras AG, Wang Z, Bates AD, Cosstick R, Brust M (2003) Towards multistep nanostructure synthesis: programmed enzymatic self-assembly of DNA/gold systems. Angew Chem Int Ed 42:191–194

    Article  CAS  Google Scholar 

  • Kikkeri R, Lepenies B, Adibekian A, Laurino P, Seeberger PH (2009) In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J Am Chem Soc 131:2110–2112

    Article  CAS  Google Scholar 

  • Kim CK, Kalluru RR, Singh JP, Fortner A, Griffin J, Darbha GK, Ray PC (2006) Gold-nanoparticle-based miniaturized laser-induced fluorescence probe for specific DNA hybridization detection: studies on size-dependent optical properties. Nanotechnology 17:3085–3093

    Article  CAS  Google Scholar 

  • Lazarides A, Schatz G (2000) DNA-linked metal nanosphere materials: structural basis for the optical properties. J Phys Chem B 104:460–467

    Article  CAS  Google Scholar 

  • Lee RT, Lin P, Lee YC (1984) New synthetic cluster ligands for galactose/N-acetylgalactosamine-specific lectin of mammalian liver. Biochemistry 23:4255–4261

    Article  CAS  Google Scholar 

  • Lee J-S, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed Engl 46:4093–4096

    Article  CAS  Google Scholar 

  • Li B, Lu F, Wei X, Zhao R (2008) Fucoidan: structure and bioactivity. Molecules 13:1671–1695

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  • Murphy RF, Powers S, Cantor CR (1984) Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J Cell Biol 98:1757–1762

    Article  CAS  Google Scholar 

  • Nitin N, Javier DJ, Richards-Kortum R (2007) Oligonucleotide-coated metallic nanoparticles as a flexible platform for molecular imaging agents. Bioconjug Chem 18:2090–2096

    Article  CAS  Google Scholar 

  • Patel PC, Giljohann DA, Daniel WL, Zheng AE, Prigodich AE, Mirkin CA (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21:2250–2256

    Article  CAS  Google Scholar 

  • Pathak A, Vyas SP, Gupta KC (2008) Nano-vectors for efficient liver specific gene transfer. Int J Nanomed 3:31–49

    Article  CAS  Google Scholar 

  • Rech C, Rosencrantz RR, Křenek K, Pelantová H, Bojarová, Römer CE, Hanisch F-G, Křen V, Elling L (2011) Combinatorial one-pot synthesis of poly-N-acetyllactosamine oligosaccharides with leloir-glycosyltransferases. Adv Synth Catal 353:2492–2500

    Article  CAS  Google Scholar 

  • Rhainds D, Falstrault L, Tremblay C, Brissette L (1999) Uptake and fate of class B scavenger receptor ligands in HepG2 cells. Eur J Biochem 261:227–235

    Article  CAS  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  • Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030

    Article  CAS  Google Scholar 

  • Rybak SL, Murphy RF (1998) Primary cell cultures from murine kidney and heart differ in endosomal pH. J Cell Physiol 176:216–222

    Article  CAS  Google Scholar 

  • Sauerzapfe B, Křenek K, Schmiedel J, Wakarchuk WW, Pelantová, Křen V, Elling L (2009) Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces. Glycoconj J 26:141–159

    Article  CAS  Google Scholar 

  • Seferos DS, Prigodich AE, Giljohann DA, Patel PC, Mirkin CA (2009) Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett 9:308–311

    Article  CAS  Google Scholar 

  • Song X, Fischer P, Chen X, Burton C, Wang J (2009) An apoA-I mimetic peptide facilitates off-loading cholesterol from HDL to liver cells through scavenger receptor BI. Int J Biol Sci 5:637–646

    Article  CAS  Google Scholar 

  • Spiess M (1990) The asialoglycoprotein receptor: a model for endocytic transport receptors. Biochemistry 29:10009–10018

    Article  CAS  Google Scholar 

  • Stockert RJ (1995) The asialoglycoprotein receptor: relationships between structure, function, and expression. Physiol Rev 75:591–609

    CAS  Google Scholar 

  • Su G, Zhou H, Mu Q, Zhang Y, Li L, Jiao P, Jiang G, Yan B (2012) Effective surface charge density determines the electrostatic attraction between nanoparticles and cells. J Phys Chem C 116:4993–4998

    Article  CAS  Google Scholar 

  • Takae S, Akiyama Y, Otsuka H, Nakamura T, Nagasaki Y, Kataoka K (2005) Ligand density effect on biorecognition by PEGylated gold nanoparticles: regulated interaction of RCA120 lectin with lactose installed to the distal end of tethered PEG strands on gold surface. Biomacromolecules 6:818–824

    Article  CAS  Google Scholar 

  • Tian X, Pai J, Baek K-H, Ko S-K, Shin I (2011) Fluorophore-labeled, peptide-based glycoclusters: synthesis, binding properties for lectins, and detection of carbohydrate-binding proteins in cells. Chem Asian J 6:2107–2113

    Article  CAS  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  • Westerlind U, Westman J, Törnquist E, Smith CIE, Oscarson S, Lahmann M, Norberg T (2004) Ligands of the asialoglycoprotein receptor for targeted gene delivery, Part 1: synthesis of and binding studies with biotinylated cluster glycosides containing N-acetylgalactosamine. Glycoconj J 21:227–241

    Article  CAS  Google Scholar 

  • Witten KG (2012) Glyko-DNA-funktionalisierte goldnanopartikel: synthese und wechselwirkung mit lektinen und zellen. PhD Thesis RWTH, Aachen University

  • Witten KG, Bretschneider JC, Eckert T, Richtering W, Simon U (2008) Assembly of DNA-functionalized gold nanoparticles studied by UV/Vis-spectroscopy and dynamic light scattering. Phys Chem Chem Phys 10:1870–1875

    Article  CAS  Google Scholar 

  • Witten KG, Rech C, Eckert T, Charrak S, Richtering W, Elling L, Simon U (2011) Glyco-DNA–gold nanoparticles: lectin-mediated assembly and dual-stimuli response. Small 7:1954–1960

    Article  CAS  Google Scholar 

  • Yan H, Tram K (2007) Glycotargeting to improve cellular delivery efficiency of nucleic acids. Glycoconj J 24:107–123

    Article  CAS  Google Scholar 

  • Yang Y, Zhang Z, Chen L, Gu W, Li Y (2010) Galactosylated poly(2-(2-aminoethyoxy)ethoxy)phosphazene/DNA complex nanoparticles: in vitro and in vivo evaluation for gene delivery. Biomacromolecules 11:927–933

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. E. Weinhold and Dr. S. Charrak (Institute of Organic Chemistry, RWTH Aachen University) for HPLC, Dr. W. Bettray (Institute of Organic Chemistry, RWTH Aachen University) for ESI–MS, Dr. Yu Pan (Biomedical Engineering, Biointerface Laboratory RWTH Aachen University) for Nanodrop analytics and the Immunohistochemistry, and Confocal Laser Scanning Microscopy Facility, a core facility of the IZKF within the Faculty of Medicine, RWTH Aachen University. We are grateful to Liangliang Hao for valuable comments on this manuscript. This research is a part of the project “ForSaTum”, co-funded by the European Union (European Regional Development Fund—Investing in your future) and the German federal state North Rhine-Westphalia (NRW). Furthermore, the work was financially supported by the Deutsche Forschungsgemeinschaft Graduate School “Biointerface” (No. 1035) and the Excellence Initiative of the German federal and state Governments (ERS Seed Fund Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Simon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 652 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witten, K.G., Ruff, J., Mohr, A. et al. Cellular uptake of fluorophore-labeled glyco-DNA–gold nanoparticles. J Nanopart Res 15, 1992 (2013). https://doi.org/10.1007/s11051-013-1992-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1992-8

Keywords

Navigation