Skip to main content
Log in

Colloidal stability, surface characterisation and intracellular accumulation of Rhodium(II) citrate coated superparamagnetic iron oxide nanoparticles in breast tumour: a promising platform for cancer therapy

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The colloidal stability of a rhodium(II) citrate, Rh2(H2cit)4, coating on the surface of maghemite (γ-Fe2O3) nanoparticles was studied and compared in different dispersion media. The adsorption of Rh2(H2cit)4 at the water-maghemite interface was evaluated as a function of pH and complex concentration. A slight pH-dependent adsorption of the complex was observed with a maximum at pH 3. The colloidal stability of the functionalised nanoparticles with different amounts of Rh2(H2cit)4 as a function of pH was evaluated using dynamic light scattering measurements. The particles have a mean magnetic core size of 5.6 nm and the hydrodynamic diameters are approximately 60 nm, which remained unchanged in the pH range in which the samples were a stable sol. The tolerance to different dispersion media, which were deionised water, saline, phosphate-buffered saline (PBS), foetal bovine serum (FBS) and NaCl solutions with different concentrations, was investigated. At moderate ionic strength, the colloidal stability of the dispersions was similar in saline and in PBS compared to the stability of dispersions diluted in water. Moreover, the intracellular accumulation of nanoparticles in 4T1 breast tumour was examined by ultrastructural analysis performed by transmission electron microscopy. The rhodium(II) citrate-coated nanoparticles were found mostly in the cytoplasm and nucleus. Thus, we suggest that these SPIO nanoparticles functionalized with Rh2(H2Cit)4 can be potential tools for anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Berry CC, Curtis ASG (2003) Functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R198–R206

    Article  CAS  Google Scholar 

  • Bitea C, Walther C, Kim JI, Geckeis H, Rabung T, Scherbaum FJ, Cacuci DG (2003) Time-resolved observation of ZrO2-colloid agglomeration. Colloid Surf A 215(1–3):55–66

    Article  CAS  Google Scholar 

  • Boyar EB, Robinson SD (1983) Rhodium(II) carboxylates. Coordin Chem Rev 50(1–2):109–208. doi:10.1016/0010-8545(83)85028-0

    Article  CAS  Google Scholar 

  • Carneiro MLB, Nunes ES, Peixoto RCA, Oliveira RGS, Lourenco LHM, da Silva ICR, Simioni AR, Tedesco AC, de Souza AR, Lacava ZGM, Bao SN (2011) Free rhodium(II) citrate and rhodium(II) citrate magnetic carriers as potential strategies for breast cancer therapy. J Nanobiotechnol 9:11. doi:10.1186/1477-3155-9-11

    Article  CAS  Google Scholar 

  • Carneiro M, Peixoto R, Joanitti G, Oliveira R, Telles L, Miranda-Vilela A, Bocca A, Vianna L, da Silva I, de Souza A, Lacava Z, Bao S (2013) Antitumor effect and toxicity of free rhodium(II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer. J Nanobiotechnol 11(1):4

    Article  CAS  Google Scholar 

  • Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 14(5):1310–1316. doi:10.1158/1078-0432.CCR-07-1441

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2004a) Adsorption of ions and molecules. In: The iron oxides. Wiley, Weinheim, pp 253–296

  • Cornell RM, Schwertmann U (2004b) Surface chemistry and colloidal stability. In: The iron oxides. Wiley, Weinheim, pp 221–252

  • de Freitas ERL, Soares PRO, Santos RD, dos Santos RL, da Silva JR, Porfirio EP, Bao SN, Lima ECD, Morais PC, Guillo LA (2008) In vitro biological activities of anionic gamma-Fe(2)O(3) nanoparticles on human melanoma cells. J Nanosci Nanotechno 8(5):2385–2391. doi:10.1166/Jnn.2008.275

    Article  Google Scholar 

  • Di Marco M, Guilbert I, Port M, Robic C, Couvreur P, Dubernet C (2007) Colloidal stability of ultrasmall superparamagnetic iron oxide (USPIO) particles with different coatings. Int J Pharm 331(2):197–203. doi:10.1016/j.ijpharm.2006.11.002

    Article  Google Scholar 

  • Eastman J (2009) Colloid Stability. In: Cosgrove T (ed) Colloid Science. Blackwell Publishing, Oxford, pp 36–49 doi: 10.1002/9781444305395.ch3

  • Eberbeck D, Wiekhorst F, Steinhoff U, Trahms L (2006) Aggregation behaviour of magnetic nanoparticles suspensions investigated by magnetorelaxometry. J Phys-Condens Mat 18(38):S2829–S2846. doi:10.1088/0953-8984/18/38/S20

    Article  CAS  Google Scholar 

  • Fauconnier N, Bee A, Roger J, Pons JN (1996) Adsorption of gluconic and citric acids on maghemite particles in aqueous medium. Prog Coll Pol Sci S 100:212–216

    Article  CAS  Google Scholar 

  • Fauconnier N, Bee A, Roger J, Pons JN (1999) Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles. J Mol Liq 83(1–3):233–242

    Article  Google Scholar 

  • Ge YQ, Zhang Y, Xia JG, Ma M, He SY, Nie F, Gu N (2009) Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro. Colloid Surf B 73(2):294–301. doi:10.1016/j.colsurfb.2009.05.031

    Article  CAS  Google Scholar 

  • Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticles albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803. doi:10.1200/Jco.2005.04.937

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  • Hajdu A, Szekeres M, Toth IY, Bauer RA, Mihaly J, Zupko I, Tombacz E (2012) Enhanced stability of polyacrylate-coated magnetite nanoparticles in biorelevant media. Colloid Surf B 94:242–249. doi:10.1016/j.colsurfb.2012.01.042

    Article  CAS  Google Scholar 

  • Hannig C, Follo M, Hellwig E, Al-Ahmad A (2010) Visualization of adherent micro-organisms using different techniques. J Med Microbiol 59(1):1–7. doi:10.1099/Jmm.0.015420-0

    Article  CAS  Google Scholar 

  • Hingston FJ, Atkinson RJ, Posner AM, Quirk JP (1967) Specific adsorption of anions. Nature 215(5109):1459. doi:10.1038/2151459a0

    Article  CAS  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press, London

    Google Scholar 

  • Illes E, Tombacz E (2003) The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite. Colloid Surf A 230(1–3):99–109. doi:10.1016/j.colsurfa.2003.09.017

    Article  CAS  Google Scholar 

  • Illes E, Tombacz E (2006) The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interf Sci 295(1):115–123. doi:10.1016/j.jcis.2005.08.003

    Article  CAS  Google Scholar 

  • Jeffery GHB J, Mendham J, Denney RC (1989) VOGEL’s textbook of quantitative chemical analysis. Longman Scientific & Technical, New York, pp 691–692

    Google Scholar 

  • Jing JY, Zhang Y, Liang JY, Zhang QB, Bryant E, Avendano C, Colvin VL, Wang YD, Li WY, Yu WW (2012) One-step reverse precipitation synthesis of water-dispersible superparamagnetic magnetite nanoparticles. J Nanopart Res 14 (4):827–835. doi:10.1007/S11051-012-0827-3

    Google Scholar 

  • Katsaros N, Anagnostopoulou A (2002) Rhodium and its compounds as potential agents in cancer treatment. Crit Rev Oncol Hemat 42(3):297–308. doi:10.1016/S1040-8428(01)00222-0

    Article  CAS  Google Scholar 

  • Kettering M, Zorn H, Bremer-Streck S, Oehring H, Zeisberger M, Bergemann C, Hergt R, Halbhuber KJ, Kaiser WA, Hilger I (2009) Characterization of iron oxide nanoparticles adsorbed with cisplatin for biomedical applications. Phys Med Biol 54(17):5109–5121. doi:10.1088/0031-9155/54/17/003

    Article  CAS  Google Scholar 

  • Kohler N, Sun C, Wang J, Zhang MQ (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21(19):8858–8864. doi:10.1021/La0503451

    Article  CAS  Google Scholar 

  • Li FR, Yan WH, Guo YH, Qi H, Zhou HX (2009) Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Int J Hyperther 25(5):383–391. doi:10.1080/02656730902834949

    Article  CAS  Google Scholar 

  • Lide DR (2008) Analytical chemistry. In: Lide DR (ed) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. Taylor & Francis, Boca Raton

    Google Scholar 

  • Liu HL, Sonn CH, Wu JH, Lee KM, Kim YK (2008) Synthesis of streptavidin-FITC-conjugated core–shell Fe3O4-Au nanocrystals and their application for the purification of CD4 + lymphocytes. Biomaterials 29(29):4003–4011

    Article  CAS  Google Scholar 

  • Lyklema J (1995) Adsorption from solution. Low molecular mass, uncharged molecules. In: AdK JL, Bijsterbosch BH, Fleer GJ, Stuart MAC (eds) Fundamentals of interface and colloid science, vol 2. Academic Press, San Diego, pp 1–91

    Google Scholar 

  • MacCuspie RI (2011) Colloidal stability of silver nanoparticles in biologically relevant conditions. J Nanopart Res 13(7):2893–2908. doi:10.1007/s11051-010-0178-x

    Article  CAS  Google Scholar 

  • Matijevic E (1980) Colloid chemical aspects of corrosion of metals. Pure Appl Chem 52(5):1179–1193. doi:10.1351/pac198052051179

    Article  CAS  Google Scholar 

  • Mohapatra S, Pramanik N, Mukherjee S, Ghosh SK, Pramanik P (2007) A simple synthesis of amine-derivatized superparamagnetic iron oxide nanoparticles for bioapplications. J Mater Sci 42(17):7566–7574. doi:10.1007/s10853-007-1597-7

    Article  CAS  Google Scholar 

  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterials dispersion in solution prior to In vitro exposure using dynamic light scattering technique. Toxicol Sci 101(2):239–253. doi:10.1093/toxsci/kfm240

    Article  CAS  Google Scholar 

  • Nowicka AM, Kowalczyk A, Donten M, Krysinski P, Stojek Z (2009) Influence of a magnetic nanoparticles as a drug carrier on the activity of anticancer drugs: interactions of double stranded DNA and doxorubicin modified with a carrier. Anal Chem 81(17):7474–7483. doi:10.1021/ac9014534

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167–R181. doi:10.1088/0022-3727/36/13/201

    Article  CAS  Google Scholar 

  • Pankhurst QA, Thanh NTK, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42(22) doi: 10.1088/0022-3727/42/22/224001

  • Riviere C, Boudghene FP, Gazeau F, Roger J, Pons JN, Laissy JP, Allaire E, Michel JB, Letourneur D, Deux JF (2005) Iron oxide nanoparticles-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Radiology 235(3):959–967. doi:10.1148/radiol.2353032507

    Article  Google Scholar 

  • Saha B, Das S, Saikia J, Das G (2011) Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: a comparative study. J Phys Chem C 115(16):8024–8033. doi:10.1021/Jp109258f

    Article  CAS  Google Scholar 

  • Sahoo Y, Goodarzi A, Swihart MT, Ohulchanskyy TY, Kaur N, Furlani EP, Prasad PN (2005) Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control. J Phys Chem B 109(9):3879–3885. doi:10.1021/jp045402y

    Article  CAS  Google Scholar 

  • Sanchez-Iglesias A, Grzelczak M, Rodriguez-Gonzalez B, Guardia-Giros P, Pastoriza-Santos I, Perez-Juste J, Prato M, Liz-Marzan LM (2009) Synthesis of multifunctional composite microgels via in situ Ni growth on pNIPAM-coated Au nanoparticles. ACS Nano 3(10):3184–3190. doi:10.1021/nn9006169

    Article  CAS  Google Scholar 

  • Santander-Ortega MJ, Peula-Garcia JM, Goycoolea FM, Ortega-Vinuesa JL (2011) Chitosan nanocapsules: effect of chitosan molecular weight and acetylation degree on electrokinetic behaviour and colloidal stability. Colloids Surf B 82(2):571–580. doi:10.1016/j.colsurfb.2010.10.019

    Article  CAS  Google Scholar 

  • Schudel M, Behrens SH, Holthoff H, Kretzschmar R, Borkovec M (1997) Absolute aggregation rate constants of hematite particles in aqueous suspensions: a comparison of two different surface morphologies. J Colloid Interf Sci 196(2):241–253. doi:10.1006/jcis.1997.5207

    Article  CAS  Google Scholar 

  • Seo WS, Lee JH, Sun XM, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, McConnell MV, Nishimura DG, Dai HJ (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 5(12):971–976. doi:10.1038/Nmat1775

    Article  CAS  Google Scholar 

  • Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99(6):1727–1735

    Article  CAS  Google Scholar 

  • Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23(11):1418–1423. doi:10.1038/Nbt1159

    Article  CAS  Google Scholar 

  • Wilhelm C, Gazeau F, Roger J, Pons JN, Bacri JC (2002) Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18(21):8148–8155. doi:10.1021/La0257337

    Article  CAS  Google Scholar 

  • Wiogo HTR, Lim M, Bulmus V, Yun J, Amal R (2011) Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS). Langmuir 27(2):843–850. doi:10.1021/La104278m

    Article  CAS  Google Scholar 

  • Zhou JK, Leuschner C, Kumar C, Hormes JF, Soboyejo WO (2006) Sub-cellular accumulation of magnetic nanoparticles in breast tumors and metastases. Biomaterials 27(9):2001–2008. doi:10.1016/j.biomaterials.2005.10.013

    Article  CAS  Google Scholar 

  • Zyngier S, Kimura E, Najjar R (1989) Antitumor effects of rhodium (II) citrate in mice bearing Ehrlich tumors. Braz J Med Biol Res 22(3):397–401

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos (FINEP), and Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparecido Ribeiro de Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva Nunes, E., Carneiro, M.L.B., de Oliveira, R.G.S. et al. Colloidal stability, surface characterisation and intracellular accumulation of Rhodium(II) citrate coated superparamagnetic iron oxide nanoparticles in breast tumour: a promising platform for cancer therapy. J Nanopart Res 15, 1683 (2013). https://doi.org/10.1007/s11051-013-1683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1683-5

Keywords

Navigation