Skip to main content
Log in

Characterization of stable, electroactive protein cage/synthetic polymer multilayer thin films prepared by layer-by-layer assembly

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We have fabricated electroactive multilayer thin films containing ferritin protein cages. The multilayer thin films were prepared on a solid substrate by the alternate electrostatic adsorption of (apo)ferritin and poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) (NIPAAm-co-CIPAAm) in pH 3.5 acetate buffer solution. The assembly process was monitored using a quartz crystal microbalance. The (apo)ferritin/poly(NIPAAm-co-CIPAAm) multilayer thin films were then cross-linked using a water-soluble carbodiimide, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide. The cross-linked films were stable under a variety of conditions. The surface morphology and thickness of the multilayer thin films were characterized by atomic force microscopy, and the ferritin iron cores were observed by scanning electron microscopy to confirm the assembly mechanism. Cyclic voltammetry measurements showed different electrochemical properties for the cross-linked ferritin and apoferritin multilayer thin films, and the effect of stability of the multilayer film on its electrochemical properties was also examined. Our method for constructing multilayer films containing protein cages is expected to be useful in building more complex functional inorganic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adachi E, Nagayama K (1996) Formation of holoferritin hexagonal arrays in secondary films due to Alder-type transition. Langmuir 12(7):1836–1839

    Article  CAS  Google Scholar 

  • Aoyagi T, Ebara M, Sakai K, Sakurai Y, Okano T (2000) Novel bifunctional polymer with reactivity and temperature sensitivity. J Biomater Sci Polym E 11(1):101–110

    Article  CAS  Google Scholar 

  • Arosio P, Adelman TG, Drysdale JW (1978) On ferritin heterogeneity. Further evidence for heteropolymers. J Biol Chem 253(12):4451–4458

    CAS  Google Scholar 

  • Caruso F, Furlong DN, Kingshott P (1997) Characterization of ferritin adsorption onto gold. J Colloid Interface Sci 186(1):129–140

    Article  CAS  Google Scholar 

  • Collier CP, Saykally RJ, Shiang JJ, Henrichs SE, Heath JR (1997) Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science 277(5334):1978–1981

    Article  CAS  Google Scholar 

  • Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237

    Article  CAS  Google Scholar 

  • Douglas T (1996) Biomimetic approaches in materials science. VCH publishers, New York

    Google Scholar 

  • Douglas T, Stark VT (2000) Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorg Chem 39(8):1828–1830

    Article  CAS  Google Scholar 

  • Ebara M, Aoyagi T, Sakai K, Okano T (2000) Introducing reactive carboxyl side chains retains phase transition temperature sensitivity in N-isopropylacrylamide copolymer gels. Macromolecules 33(22):8312–8316. doi:10.1021/Ma000121j

    Article  CAS  Google Scholar 

  • Furuno T, Sasabe H, Ulmer KM (1989) Binding of ferritin molecules to a charged polypeptide layer of poly-1-benzyl-l-histidine. Thin Solid Films 180:23–30

    Article  CAS  Google Scholar 

  • Iwahori K, Yoshizawa K, Muraoka M, Yamashita I (2005) Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. Inorg Chem 44(18):6393–6400. doi:10.1021/Ic0502426

    Article  CAS  Google Scholar 

  • Johnson CA, Yuan Y, Lenhoff AM (2000) Adsorbed layers of ferritin at solid and fluid interfaces studied by atomic force microscopy. J Colloid Interface Sci 223(2):261–272

    Article  CAS  Google Scholar 

  • Kanda T, Yamamoto K, Aoyagi T (2005) N-isopropylacrylamide-based temperature-responsive polymer with carboxyl groups for controlled drug release. J Photopolym Sci Technol 18(4):515–518

    Article  CAS  Google Scholar 

  • Kim JW, Choi SH, Lillehei PT, Chu SH, King GC, Watt GD (2007) Electrochemically controlled reconstitution of immobilized ferritins for bioelectronic applications. J Electroanal Chem 601(1–2):8–16. doi:10.1016/j.jelechem.2006.10.018

    CAS  Google Scholar 

  • Kramer RM, Li C, Carter DC, Stone MO, Naik RR (2004) Engineered protein cages for nanomaterial synthesis. J Am Chem Soc 126(41):13282–13286. doi:10.1021/Ja046735b

    Article  CAS  Google Scholar 

  • Lvov Y, Decher G, Sukhorukov G (1993) Assembly of thin-films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules 26(20):5396–5399

    Article  CAS  Google Scholar 

  • Lvov Y, Haas H, Decher G, Mohwald H, Mikhailov A, Mtchedlishvily B, Morgunova E, Vainshtein B (1994) Successive deposition of alternate layers of polyelectrolytes and a charged virus. Langmuir 10(11):4232–4236

    Article  CAS  Google Scholar 

  • Lvov Y, Ariga K, Ichinose I, Kunitake T (1995) Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J Am Chem Soc 117(22):6117–6123

    Article  CAS  Google Scholar 

  • Martin KC, Villano SM, McCurdy PR, Zapien DC (2003) Studies of electrochemically transformed ferritin adsorbed at tin-doped indium oxide electrodes using X-ray photoelectron spectroscopy. Langmuir 19(14):5808–5812. doi:10.1021/La020098q

    Article  CAS  Google Scholar 

  • Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution–surface interface. Biomacromolecules 4(5):1099–1120. doi:10.1021/bm020116i

    Article  CAS  Google Scholar 

  • Matsui T, Matsukawa N, Iwahori K, Sano KI, Sano KI, Shiba K, Yamashita I (2007) Direct production of a two-dimensional ordered array of ferritin-nanoparticles on a silicon substrate. Jpn J Appl Phys Part 2 46(25–28):L713–L715

    Article  CAS  Google Scholar 

  • Meldrum FC, Wade VJ, Nimmo DL, Heywood BR, Mann S (1991) Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349(6311):684–687

    Article  CAS  Google Scholar 

  • Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics, Inc., Eden Prairie

    Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Edit 40(22):4128–4158

    Article  CAS  Google Scholar 

  • Okahata Y, Ebato H (1989) Application of a quartz-crystal microbalance for detection of phase-transitions in liquid-crystals and lipid multibilayers. Anal Chem 61(19):2185–2188. doi:10.1021/Ac00194a014

    Article  CAS  Google Scholar 

  • Okuda M, Iwahori K, Yamashita I, Yoshimura H (2003) Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnol Bioeng 84(2):187–194. doi:10.1002/Bit.10748

    Article  CAS  Google Scholar 

  • Panchagnula V, Kumar CV, Rusling JF (2002) Ultrathin layered myoglobin-polyion films functional and stable at acidic pH values. J Am Chem Soc 124(42):12515–12521. doi:10.1021/Ja020683d

    Article  CAS  Google Scholar 

  • Redl FX, Cho KS, Murray CB, O’Brien S (2003) Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423(6943):968–971. doi:10.1038/Nature01702

    Article  CAS  Google Scholar 

  • Rodahl M, Kasemo B (1996) On the measurement of thin liquid overlayers with the quartz-crystal microbalance. Sensor Actuat a Phys 54(1–3):448–456. doi:10.1016/S0924-4247(97)80002-7

    Article  Google Scholar 

  • Sampaio JF, Beverly KC, Heath JR (2001) DC transport in self-assembled 2D layers of Ag nanoparticles. J Phys Chem B 105(37):8797–8800

    Article  CAS  Google Scholar 

  • Sano K, Sasaki H, Shiba K (2006) Utilization of the pleiotropy of a peptidic aptamer to fabricate heterogeneous nanodot-containing multilayer nanostructures. J Am Chem Soc 128(5):1717–1722. doi:10.1021/Ja057262r

    Article  CAS  Google Scholar 

  • Sano KI, Yoshii S, Yamashita I, Shiba K (2007) In aqua structuralization of a three-dimensional configuration using biomolecules. Nano Lett 7(10):3200–3202. doi:10.1021/Nl071921b

    Article  CAS  Google Scholar 

  • Sauerbrey G (1959) Verwendung von schwingquarzen zur wagung dunner schichten und zur mikrowagung. Z Phys 155(2):206–222. doi:10.1007/bf01337937

    Article  CAS  Google Scholar 

  • Scheybani T, Yoshimura H, Baumeister W, Nagayama K (1996) Stabilization of a fragile two-dimensional protein crystal at the water-air interface: the square lattice of apoferritin. Langmuir 12(2):431–435

    Article  CAS  Google Scholar 

  • Serizawa T, Hamada K, Kitayama T, Fujimoto N, Hatada K, Akashi M (2000) Stepwise stereocomplex assembly of stereoregular poly(methyl methacrylate)s on a substrate. J Am Chem Soc 122(9):1891–1899

    Article  CAS  Google Scholar 

  • Serizawa T, Yamashita H, Fujiwara T, Kimura Y, Akashi M (2001) Stepwise assembly of enantiomeric poly(lactide)s on surfaces. Macromolecules 34(6):1996–2001

    Article  CAS  Google Scholar 

  • Serizawa T, Hamada K, Akashi M (2004a) Polymerization within a molecular-scale stereoregular template. Nature 429(6987):52–55

    Article  CAS  Google Scholar 

  • Serizawa T, Matsukuma D, Nanameki K, Uemura M, Kurusu F, Akashi M (2004b) Stepwise preparation and characterization of ultrathin hydrogels composed of thermoresponsive polymers. Macromolecules 37(17):6531–6536. doi:10.1021/Ma049154f

    Article  CAS  Google Scholar 

  • Serizawa T, Matsukuma D, Akashi M (2005) Loading and release of charged dyes using ultrathin hydrogels. Langmuir 21(17):7739–7742. doi:10.1021/La0505263

    Article  CAS  Google Scholar 

  • Shevchenko EV, Talapin DV, O’Brien S, Murray CB (2005) Polymorphism in AB(13) nanoparticle superlattices: an example of semiconductor-metal metamaterials. J Am Chem Soc 127(24):8741–8747. doi:10.1021/Ja050510z

    Article  CAS  Google Scholar 

  • Silk ST, Breslow E (1976) Hydrogen-ion interactions of horse spleen ferritin and apoferritin. J Biol Chem 251(22):6963–6973

    CAS  Google Scholar 

  • Sommer AP, Zhu D, Foersterling HD, Scharnweber T, Welle A (2008) Crystalline water at room temperature—under water and in air. Cryst Growth Des 8(8):2620–2622. doi:10.1021/Cg800382x

    Article  CAS  Google Scholar 

  • Srivastava S, Kotov NA (2008) Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc Chem Res 41(12):1831–1841. doi:10.1021/Ar8001377

    Article  CAS  Google Scholar 

  • Steinmetz NF, Calder G, Lomonossoff GP, Evans DJ (2006) Plant viral capsids as nanobuilding blocks: construction of arrays on solid supports. Langmuir 22(24):10032–10037. doi:10.1021/La0621362

    Article  CAS  Google Scholar 

  • Steinmetz NF, Bock E, Richter RP, Spatz JP, Lomonossoff GP, Evans DJ (2008a) Assembly of multilayer arrays of viral nanoparticles via biospecific recognition: a quartz crystal microbalance with dissipation monitoring study. Biomacromolecules 9(2):456–462. doi:10.1021/Bm700797b

    Article  CAS  Google Scholar 

  • Steinmetz NF, Findlay KC, Noel TR, Parker R, Lomonossoff GR, Evans DJ (2008b) Layer-by-layer assembly of viral nanoparticles and polyelectrolytes: the film architecture is different for spheres versus rods. ChemBioChem 9(10):1662–1670. doi:10.1002/cbic.200800070

    Article  CAS  Google Scholar 

  • Stockton WB, Rubner MF (1997) Molecular-level processing of conjugated polymers.4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 30(9):2717–2725

    Article  CAS  Google Scholar 

  • Suci PA, Klem MT, Arce FT, Douglas T, Young M (2006) Assembly of multilayer films incorporating a viral protein cage architecture. Langmuir 22(21):8891–8896. doi:10.1021/La0612062

    Article  CAS  Google Scholar 

  • Sukhishvili SA, Granick S (2000) Layered, erasable, ultrathin polymer films. J Am Chem Soc 122(39):9550–9551

    Article  CAS  Google Scholar 

  • Tominaga M, Taniguchi I (2001) Electrochemically regulated iron uptake and release for ferritin immobilized on self-assembled monolayer-modified gold electrodes. Chem Lett 7:704–705

    Article  Google Scholar 

  • Tominaga M, Ohira A, Yamaguchi Y, Kunitake M (2004) Electrochemical, AFM and QCM studies on ferritin immobilized onto a self-assembled monolayer-modified gold electrode. J Electroanal Chem 566(2):323–329. doi:10.1016/j.jelechem.2003.11.056

    Article  CAS  Google Scholar 

  • Treffry A, Harrison PM (1978) Incorporation and release of inorganic-phosphate in horse spleen ferritin. Biochem J 171(2):313–320

    CAS  Google Scholar 

  • Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19(8):1025–1042. doi:10.1002/adma.200601168

    Article  CAS  Google Scholar 

  • Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y (2004) Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angew Chem Int Edit 43(19):2527–2530. doi:10.1002/anie.200353436

    Article  CAS  Google Scholar 

  • Wong KKW, Mann S (1996) Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites. Adv Mater 8(11):928–932

    Article  CAS  Google Scholar 

  • Yamada K, Yoshii S, Kumagai S, Fujiwara I, Nishio K, Okuda M, Matsukawa N, Yamashita I (2006) High-density and highly surface selective adsorption of protein–nanoparticle complexes by controlling electrostatic interaction. Jpn J Appl Phys 45(5A):4259–4264. doi:10.1143/jjap.45.4259

    Article  CAS  Google Scholar 

  • Yamashita I (2001) Fabrication of a two-dimensional array of nano-particles using ferritin molecule. Thin Solid Films 393(1–2):12–18

    Article  CAS  Google Scholar 

  • Yamashita I, Hayashi J, Hara M (2004) Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin. Chem Lett 33(9):1158–1159

    Article  CAS  Google Scholar 

  • Yamashita K, Kirimura H, Okuda M, Nishio K, Sano KI, Shiba K, Hayashi T, Hara M, Mishima Y (2006) Selective nanoscale positioning of ferritin and nanoparticles by means of target-specific peptides. Small 2(10):1148–1152. doi:10.1002/smll.200600220

    Article  CAS  Google Scholar 

  • Yoshimura H, Scheybani T, Baumeister W, Nagayama K (1994) Two-dimensional protein array growth in thin layers of protein solution on aqueous subphases. Langmuir 10(9):3290–3295. doi:10.1021/la00021a062

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CREST of the Japan and Science Agency, and Grant-in-Aid for Scientific Research (19650126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takao Aoyagi or Ichiro Yamashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uto, K., Yamamoto, K., Kishimoto, N. et al. Characterization of stable, electroactive protein cage/synthetic polymer multilayer thin films prepared by layer-by-layer assembly. J Nanopart Res 15, 1516 (2013). https://doi.org/10.1007/s11051-013-1516-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1516-6

Keywords

Navigation