Skip to main content
Log in

Seed-mediated direct growth of CdSe nanoclusters on substrates

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Different shapes of CdSe nanostructures were obtained by hydrothermal method with varied Se sources and buffer layers. Hexagonal nanoparticles of CdSe with Wurtzite structure were synthesized from Se powder resource, while CdSe nanoclusters with Wurtzite structure were grown from Na2SeO3 aqueous solution resources at 165 °C using cetyltrimethylammonium bromide as surfactant. Using ZnO nanoparticles as a seed layer, CdSe nanostructures only partially covered the indium tin oxide (ITO) substrates. With ZnO/CdSe quantum dots composite seed layer, CdSe nanostructures fully covered the ITO substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  • Bullen CR, Mulvaney P (2004) Nucleation and growth kinetics of CdSe nanocrystals in octadecene. Nano Lett 4:2303–2307

    Article  CAS  Google Scholar 

  • Chen J (2009) An oleic acid-capped CdSe quantum-dot sensitized solar cell. Appl Phys Lett 94:153115

    Article  Google Scholar 

  • Chen M, Gao L (2005) Synthesis and characterization of Cadmium Selenide nanorods via surfactant-assisted hydrothermal method. J Am Ceram Soc 88:1643–1646

    Article  CAS  Google Scholar 

  • Feng Z, Zhang Q, Lin L, Guo H, Zhou J, Lin Z (2010) 0001-Preferential growth of CdSe nanowires on conducting glass: template-free electrodeposition and application in photovoltaics. Chem Mater 22:2705–2710

    Article  CAS  Google Scholar 

  • Foos EE, Wilkinson J, Mäkinen AJ, Watkins NJ, Kafafi ZH, Long JP (2006) Synthesis and surface composition study of CdSe nanoclusters prepared using solvent systems containing primary, secondary, and tertiary amines. Chem Mater 18:2886–2894

    Article  CAS  Google Scholar 

  • Kwon S, Shim M, Lee JI, Lee T-W, Cho K, Kim JK (2011) Ultrahigh density array of CdSe nanorods for CdSe/polymer hybrid solar cells: enhancement in short-circuit current density. J Mater Chem 21:12449–12453

    Article  CAS  Google Scholar 

  • Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459

    Article  CAS  Google Scholar 

  • Li H, Wang J, Liu H, Zhang H, Li X (2005) Zinc oxide films prepared by sol–gel method. J Cryst Growth 275:e943–e946

    Article  CAS  Google Scholar 

  • Liu Y, Qiu H-Y, Xu Y, Wu D, Li M-J, Jiang J-X, Lai G-Q (2007) Selective synthesis of Wurtzite CdSe nanorods and zinc blend CdSe nanocrystals through a convenient solvothermal route. J nanoparticles Res 9:745–752

    Article  CAS  Google Scholar 

  • Matsumura N, Saito T, Saraie J (2001) Photoluminescence of self-assembled CdSe quantum dots by molecular beam epitaxy. J Cryst Growth 227–228:1121–1125

    Article  Google Scholar 

  • Natsume Y, Sakata H (2000) Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films 372:30–36

    Article  CAS  Google Scholar 

  • Neeleshwar S, Chen CL, Tsai CB, Chen YY, Chen CC, Shyu SG, Seehra MS (2005) Size-dependent properties of CdSe quantum dots. Phys Rev B 71:201307

    Article  Google Scholar 

  • Ouyang J (2010) Application of nanomaterials in two-terminal resistive-switching memory devices. Nano Rev 1:5118

    Google Scholar 

  • Pan S, Xu T, Venkatesan S, Qiao Q (2012) Direct growth of CdSe nanorods on ITO substrates by co-anchoring of ZnO nanoparticles and ethylenediamine. J Nanoparticles Res 14:1–7

    Article  Google Scholar 

  • Pang Q, Zhao LJ, Cai Y, Nguyen DP, Regnault N, Wang N, Yang SH, Ge WK, Ferreira R, Bastard G, Wang JN (2005) CdSe nano-tetrapods: controllable synthesis, structure analysis, and electronic and optical properties. Chem Mater 17:5263–5267

    Article  CAS  Google Scholar 

  • Peng ZA, Peng X (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395

    Article  CAS  Google Scholar 

  • Peng ZA, Peng X (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353

    Article  CAS  Google Scholar 

  • Peng Q, Dong Y, Deng Z, Li Y (2002) Selective synthesis and characterization of CdSe nanorods and fractal nanocrystals. Inorg Chem 41:5249–5254

    Article  CAS  Google Scholar 

  • Wang X, Li Y (2006) Solution-based synthetic strategies for 1-D nanostructures. Inorg Chem 45:7522–7534

    Article  CAS  Google Scholar 

  • Wang M, Ye C-H, Zhang Y, Wang H-X, Zeng X-Y, Zhang L-D (2008) Seed-layer controlled synthesis of well-aligned ZnO nanowire arrays via a low temperature aqueous solution method. J Mater Sci Mater Electron 19:211–216

    Article  Google Scholar 

  • Wu F, Shen W, Cui Q, Bi D, Yue W, Qu Q, Wang M (2010) Dynamic characterization of hybrid solar cells based on polymer and aligned ZnO nanorods by intensity modulated photocurrent spectroscopy. The J Phys Chem C 114:20225–20235

    Article  CAS  Google Scholar 

  • Xie R, Li Z, Peng X (2009) Nucleation kinetics versus chemical kinetics in the initial formation of semiconductor nanocrystals. J Am Chem Soc 131:15457–15466

    Article  CAS  Google Scholar 

  • Xie Y, Joshi P, Darling SB, Chen Q, Zhang T, Galipeau D, Qiao Q (2010) Electrolyte effects on electron transport and recombination at ZnO nanorods for dye-sensitized solar cells. The J Phys Chem C 114:17880–17888

    Article  CAS  Google Scholar 

  • Xu T, Qiao Q (2011) Conjugated polymer-inorganic semiconductor hybrid solar cells. Energy Environ Sci 4:2700–2720

    Article  CAS  Google Scholar 

  • Xu T, Chen Q, Lin D-H, Wu H-Y, Lin C-F, Qiao Q (2011) Self-assembled thienylsilane molecule as interfacial layer for ZnO nanowire/polymer hybrid system. J Photonics Energy 1:011107

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by US-Egypt Joint Science &Technology Funds (913), South Dakota BoR Competitive Research Grant Program (CRGP) and NSF EPSCoR program (Grant No. 0903804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangke Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, S., Ebrahim, S., Soliman, M. et al. Seed-mediated direct growth of CdSe nanoclusters on substrates. J Nanopart Res 15, 1420 (2013). https://doi.org/10.1007/s11051-013-1420-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1420-0

Keywords

Navigation