Skip to main content
Log in

From quenched to unquenched orbital magnetic moment on metallic@oxide nanoparticles: dc magnetic properties and electronic correlation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, the correlation between magnetic, structure, and electronic properties of Ag@Fe3O4 hetero nanostructures are presented. These nanostructures were prepared using a two-step new chemical approach. Three different nanoparticle systems with different Ag concentrations have been prepared and characterized using high resolution transmission electron microscopy, dc magnetization (magnetization and coercive field as a function of temperature), X-ray absorption near edge spectroscopy, and magnetic circular dichroism studies (XMCD). From the correlation between XMCD and dc magnetic measurements (Verwey transition) the presence of non-stoichiometric magnetite in Ag@Fe3O4 nanoparticle systems was confirmed. From the spin and orbital contribution to the total magnetic moment, we conclude that the sample with less Ag seeds particle concentration presents a non-quenched orbital contribution. These phenomena were analyzed based on the actual models and correlated with dc magnetic properties. From these, we conclude that the enhancement on the orbital contribution increases the spin orbital interaction, also increasing the magnetocrystalline anisotropy reflected on the dc magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aragón R, Honig JM (1988) Mean-field model of the Verwey transition in magnetite. Phys Rev B 37:209–218. doi:10.1103/PhysRevB.37.209

    Article  Google Scholar 

  • Aragón R, Butterey D, Shephered JP, Honig JM (1985) Influence of nonstoichiometry on the Verwey transition. Phys Rev B 31:430. doi:10.1103/PhysRevB.31.430

    Article  Google Scholar 

  • Aragón R, Butterey D, Shephered JP, Honig JM (1993) Stoichiometry, percolation, and Verwey ordering in magnetite. Phys Rev lett 70:1635–1638. doi:10.1103/PhysRevLett.70.1635

    Article  Google Scholar 

  • Arruebo M, Fernandez-Pacheco N, Ibarra R, Santamaría MR (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:23–33. doi:10.1016/S1748-0132(07)70084-1

    Article  Google Scholar 

  • Chen CT , Idzerda YU, Lin HJ, Smith NV, Meigs G, Chaban E, Ho GH, Pellegrin E, Sette F (1995) Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys Rev Lett 75:152–155. doi:10.1103/PhysRevLett.75.152

    Article  CAS  Google Scholar 

  • Figueiredo JJS, Basilio R, Landers R, Garcia F, de Siervo A (2009) A new ultra-high-vacuum variable temperature and high-magnetic-field X-ray magnetic circular dichroism facility at LNLS. J Sync Rad 16:346–351. doi:10.1107/S090904950900243X

    Article  CAS  Google Scholar 

  • Forloni G (2012) Responsible nanotechnology development. J Nanopart Res 14:1007

    Google Scholar 

  • Goya G, Grazu V, Ibarra MR (2008) Magnetic nanoparticles for cancer therapy. Curr Nanosci 4(1):1–16. doi:10.2174/157341308783591861

    Article  CAS  Google Scholar 

  • Honig JM (1995) Analysis of the Verwey transition in magnetite. J Alloys Compd 229(1):24–39. doi:10.1016/0925-8388(95)01677-5

    Article  CAS  Google Scholar 

  • Hsu JH, Chen SY, Chang WM, Jian TS, Chang CR, Lee SF (2003) Magnetoresistance effect in AgFe3O4 and AlFe3O4 composite films. J Appl Phys 93(10):7702–7704. doi:10.1063/1.1540151

    Article  CAS  Google Scholar 

  • Huang DJ, Chang CF, Jeng HT, Guo GY, Lin HJ, Wu WB, Ku HC, Fujimori A, Takahashi Y, Chen CT (2004) Spin and orbital magnetic moments of Fe3O4. Phys Rev Lett 93:077204. doi:10.1103/PhysRevLett.93.077204

    Article  CAS  Google Scholar 

  • Knobel D, Nunes WC, Socolovsky LM, De Biasi E, Vargas JM, Denardin JC (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8:2836–2857. doi:10.1166/jnn.2008.017

    CAS  Google Scholar 

  • Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422. doi:10.1038/nnano.2011.95

    Article  CAS  Google Scholar 

  • Lin Fh, Chen W, Liao YH, Doong Ra, Li Y (2011) Effective approach for the synthesis of monodisperse magnetic nanocrystals and M–Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res 4(12):1223–1232. doi:10.1007/s12274-011-0173-2

    Article  CAS  Google Scholar 

  • Lou, Yu K, Zhang Z, Huang R, Zhu J, Wang Y, Zhu Z (2012) Dual-mode protein detection based on Fe3O4Au hybrid nanoparticles. Nano Res 5(4):272–282

  • Morrall P, Schedin F, Case GS, Thomas MF, Dudzik E, Van der Laan G, Thornton G (2004) Stoichiometry of Fe3O4(111) ultrathin films on Pt(111). Phys Rev B 67(21):214408-1–214408-7. doi:10.1103/PhysRevB.67.214408

    Google Scholar 

  • Muraca D, Sharma SK, Socolovsky LM, de Siervo A, Lopes G, Pirota KR (2012) Influence of silver concentrations on structural and magnetic properties of Ag–Fe3O4 heterodimer. Nanopart J Nanosci Nanotechnol 12:6961–6967. doi:10.1166/jnn.2012.6155

    Article  CAS  Google Scholar 

  • Nunes WN, Folly WSD, Sinnecker JP, Novak MA (2004) Temperature dependence of the coercive field in single-domain particle systems. Phys Rev B 70:014419-1–014419-6. doi:10.1103/PhysRevB.70.014419

    Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 36:R167–R181. doi:10.1088/0022-3727/36/13/201

    Article  CAS  Google Scholar 

  • Pérez N, Bartolomé F, García LM, Bartolomé J, Morales MP, Serna CJ, Labarta A, Batlle X (2009) Nanostructural origin of the spin and orbital contribution to the magnetic moment in Fe3x O4 magnetite nanoparticles. Appl Phys Lett 94(9):093108-1–093108-3. doi:10.1063/1.3095484

    Google Scholar 

  • Salado J, Insausti M, Lezama L, Gil de Muro I, Moros M, Pelaz B, Grazu V, de la Fuente JM, Rojo T (2012) Functionalized Fe3O4@Au superparamagnetic nanoparticles: in vitro bioactivity. Nanotechnology 23(31):315102-1–315102-10. doi:10.1088/0957-4484/23/31/315102

    Google Scholar 

  • Serantes D, Baldomir D, Pereiro M, Botana J, Prida VM, Hernando B, Arias JE, Rivas J (2010) Magnetocaloric effect in magnetic nanoparticle systems: how to choose the best magnetic material? J Nanosci Nanotechnol 10(4):2512–2517. doi:10.1166/jnn.2010.1424

    Google Scholar 

  • Sharma SK, Gleyguestone L, Vargas JM, Socolovsky LM, Pirota KR, Knobel M (2012) Synthesis of Ag–CoFe2O4 dimer colloidal nanoparticles and enhancement of their magnetic response. J Appl Phys 109(7):07B530-1–07B530-3. doi:10.1063/1.3556771

  • Shephered JP, Aragón R, Koenitzer JW, Honig JM (1985) Changes in the nature of the Verwey transition in nonstoichiometric magnetite (Fe3O4). Phys Rev B 32:1818–1819. doi:10.1103/PhysRevB.32.1818

    Article  Google Scholar 

  • Shephered JP, Koenitzer JW, Aragn R, Spalek J, Honig JM (1991) Heat capacity and entropy of nonstoichiometric magnetite Fe3(1 − δ)O4: the thermodynamic nature of the Verwey transition. Phys Rev B 43:8461847. doi:10.1103/PhysRevB.43.8461

  • Verwey EJW (1939) Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144:327–328. doi:10.1038/144327b0

    Article  CAS  Google Scholar 

  • Verwey EJW, Haayman PW (1941) Electronic conductivity and transition point of magnetite (Fe3O4). Physica 8:979–987. doi:10.1016/S0031-8914(41)80005-6

    Article  CAS  Google Scholar 

  • Wang C, Yin H, Dai S, Sun S (2010) A general approach to noble metal–metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem Mater 22(10):3277–3282. doi:10.1021/cm100603r

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Brazilian agency FAPESP. These studies were performed in the Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas-UNICAMP. TEM data were acquired by Dr. L. Socolovsky at the LME-HRTEM (JEM-3010) of the Brazilian Synchrotron Light Laboratory (LNLS). Carlos Ramos, from Instituto Balseiro, is also acknowledged for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Muraca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muraca, D., de Siervo, A. & Pirota, K.R. From quenched to unquenched orbital magnetic moment on metallic@oxide nanoparticles: dc magnetic properties and electronic correlation. J Nanopart Res 15, 1375 (2013). https://doi.org/10.1007/s11051-012-1375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1375-6

Keywords

Navigation