Skip to main content
Log in

Electro-hydrodynamic generation of monodisperse nanoparticles in the sub-10 nm size range from strongly electrolytic salt solutions: governing parameters of scaling laws

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A charge reduced electro-hydrodynamic atomization (EHDA) device has been used to generate airborne salt clusters in the sub 10 nm size range. The focus of this study on that specific sub-micron range of electrospray droplets with relatively high electrical conductivities and permittivities aims to address the still existing controversy on the scaling laws of electrosprayed droplet diameters. In this study different concentrations of sodium chloride and potassium chloride—both show strong electrolytic behavior—have been electrosprayed from solutions in pure water, or from aqueous ammonium acetate buffer liquids of varying concentrations. The dry residue salt cluster diameter generated by the EHDA process have been measured using a differential mobility analyzer. The initial droplet diameter has been determined indirectly from the measured particle size following the steps of Chen et al. (J Aerosol Sci 26:963–977, 1995). Results have been compared to existing scaling laws valid for direct droplet measurements. They can be interpreted concisely on the basis of a realistic hypothesis on possible electrochemical effects taking place and affecting the droplet and thus nanoparticle formation in EHDA. The hypothesis developed in this work and the comparison with the experimental results are shown and discussed in the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allmaier G, Laschober C, Szymanski W (2008) Nano ES–GEMMA and PDMA, new tools for the analysis of nanobioparticles—protein complexes, lipoparticles, and viruses. J Am Soc Mass Spec 19:1062–1068

    Google Scholar 

  • Attoui M, Fernández-García J, Cuevas J, Vidal-de-Miguel G, Fernandez de la Mora J (2013) Charge evaporation from nanometer polystyrene aerosols. J Aerosol Sci 55:149–156

    Google Scholar 

  • Bacher G, Szymanski W, Kaufman S, Zöllner P, Blaas D, Allmaier G (2001) Charge-reduced nano electrospray ionization combined with differential mobility analysis of peptides, proteins, glycoproteins, noncovalent protein complexes and viruses. J Mass Spec 36(9):1038–1052

    Article  CAS  Google Scholar 

  • Basak S, Chen D, Biswas P (2007) Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem Eng Sci 62(4):1263–1268

    Article  CAS  Google Scholar 

  • Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Chen D, Pui D (1997) Experimental investigation of scaling laws for electrospraying: dielectric constant effect. Aerosol Sci Technol 27(3):367–380

    Article  CAS  Google Scholar 

  • Chen DR, Pui DYH, Kaufman SL (1995) Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range. J Aerosol Sci 26:963–977

    Article  CAS  Google Scholar 

  • Cloupeau M (1994) Recipes for use of EHD spraying in cone-jet mode and notes on corona discharge effects. J Aerosol Sci 25(6):1143–1157

    Article  CAS  Google Scholar 

  • Cloupeau M, Prunet-Foch B (1989) Electrostatic spraying of liquids in cone-jet mode. J Electrost 22:135–159

    Google Scholar 

  • Cloupeau M, Prunet-Foch B (1990) Electrostatic spraying of liquids: main functioning modes. J Electrost 25(2):165–184

    Google Scholar 

  • Fernandez de la Mora J (2007) The fluid dynamics of Taylor cones. Annu Rev Fluid Mech 39:217–243

    Google Scholar 

  • Fernandez de la Mora J, Loscertales I (1994) The current emitted by highly conducting Taylor cones. J Fluid Mech 260:155–184

    Google Scholar 

  • Fuchs N (1963) On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Pure Appl Geophys 56(1):185–193

    Article  Google Scholar 

  • Gamero-Castaño M, Hruby V (2002) Electric measurements of charged sprays emitted by cone-jets. J Fluid Mech 459:245–276

    Article  Google Scholar 

  • Gañán-Calvo AM (1997) Cone-jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys Rev Lett 79:217–220

    Article  Google Scholar 

  • Gañán-Calvo AM (1997) On the theory of electrohydrodynamically driven capillary jets. J Fluid Mech 335:165–188

    Article  Google Scholar 

  • Gañán-Calvo AM (1998) The universal nature and scaling law of the surface charge in electrospraying. J Aerosol Sci 29:S975–S976

    Google Scholar 

  • Gañán-Calvo AM (1999) The surface charge in electrospraying: its nature and its universal scaling laws. J Aerosol Sci 30:863–872

    Google Scholar 

  • Gañán-Calvo AM (2004) On the general scaling theory for electrospraying. J Fluid Mech 507:203–212

    Article  Google Scholar 

  • Gañán-Calvo AM, Montanero JM (2009) Revision of capillary cone-jet physics: electrospray and flow focusing. Phys Rev E 79:066305

    Article  Google Scholar 

  • Gañán-Calvo AM, Lasheras JC, Dávila J, Barrero A (1994) The electrostatic spray emitted from an electrified conical meniscus. J Aerosol Sci 25:1121–1142

    Article  Google Scholar 

  • Gañán-Calvo AM, Dávila J, Barrero A (1997) Current and droplet size in the electrospraying of liquids scaling laws. J Aerosol Sci 28:249–275

    Article  Google Scholar 

  • Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM, Scarlett B (1999) Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. J Aerosol Sci 30:823–849

    Article  CAS  Google Scholar 

  • Hummes D, Neumann S, Fissan H, Stratmann F (1996) Experimental determination of the transfer function of a differential mobility analyzer (dma) in the nanometer size range. Part Part Syst Charact 13(5):327–332

    Article  CAS  Google Scholar 

  • Jaworek A, Sobczyk A (2008) Electrospraying route to nanotechnology: an overview. J Electrost 66:197–219

    Article  CAS  Google Scholar 

  • Kaufman S, Dorman F (2008) Sucrose clusters exhibiting a magic number in dilute aqueous solutions. Langmuir 24(18):9979–9982

    Article  CAS  Google Scholar 

  • Laschober C, Kaufman S, Reischl G, Allmaier G, Szymanski W (2006) Comparison between an unipolar corona charger and a polonium-based bipolar neutralizer for the analysis of nanosized particles and biopolymers. J Nanosci Nanotechnol 6(5):1474–1481

    Article  CAS  Google Scholar 

  • Lenggoro I, Okuyama K, Fernándezdela Mora J, Tohge N (2000) Preparation of ZnS nanoparticles by electrospray pyrolysis. J Aerosol Sci 31(1):121

    Article  CAS  Google Scholar 

  • Li Z, Li Y, Lu J (1999) Surface tension model for concentrated electrolyte aqueous solutions by the Pitzer equation. Ind Eng Chem Res 38(3):1133–1139

    Article  CAS  Google Scholar 

  • Lide DR (2007) Handbook of chemistry and physics, 88th edition. CRC Press, Boca Raton

    Google Scholar 

  • Liu B, Pui D (1974) Electrical neutralization of aerosols. J Aerosol Sci 5(5):465–472

    Article  Google Scholar 

  • López-Herrera JM, Gañán-Calvo AM (2004) A note on charged capillary jet breakup of conducting liquids: experimental validation of a viscous one-dimensional model. J Fluid Mech 501:303–326

    Article  Google Scholar 

  • Reischl GP, Makela JM, Karch R, Necid J (1996) Bipolar charging of ultrafine particles in the size range below 10 nm. J Aerosol Sci 27:931–949

    Article  CAS  Google Scholar 

  • Rosell-Llompart J, de la Mora JF (1994) Generation of monodisperse droplets 0.3 to 4 micrometre in diameter from electrified cone-jets of highly conducting and viscous liquids. J Aerosol Sci 25:1093–1119

    Article  CAS  Google Scholar 

  • Saville DA (1997) Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu Rev Fluid Mech 29:27–64

    Article  Google Scholar 

  • Scalf M, Westphall MS, Krause J, Kaufman SL, Smith LM (1999) Controlling charge states of large ions. Science 283:194–197

    Google Scholar 

  • Tammet H (1995) Size and mobility of nanometer particles, clusters and ions. J Aerosol Sci 26(3):459–475

    Article  CAS  Google Scholar 

  • Tang K, Gomez A (1994) Generation by electrospray of monodisperse water droplets for targeted drug delivery by inhalation. J Aerosol Sci 25(6):1237–1249

    Article  CAS  Google Scholar 

  • Taylor G (1964) Disintegration of water drops in electric field. Proc R Soc Lond A 280:383–397

    Article  Google Scholar 

  • Wild M, Meyer J, Kasper G (2012) A fast accurate method of using electrical mobility scans for the direct measurement of aerosol charge distributions. J Aerosol Sci 52:69–79

    Article  CAS  Google Scholar 

  • Winklmayr W, Reischl GP, Lindner AO, Berner A (1991) A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. J Aerosol Sci 22(3):289–296

    Article  CAS  Google Scholar 

  • Zeleny J (1917) Instability of electrified liquid surfaces. Phys Rev 10:1–6

    Article  Google Scholar 

  • Zhang HL, Han SJ (1996) Viscosity and density of water + sodium chloride + potassium chloride solutions at 298.15 k. J Chem Eng Data 41:516–520

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the partial financial support by the Austrian Science Foundation (FWF, Grant No. TRP29)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Maißer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maißer, A., Attoui, M.B., Gañán-Calvo, A.M. et al. Electro-hydrodynamic generation of monodisperse nanoparticles in the sub-10 nm size range from strongly electrolytic salt solutions: governing parameters of scaling laws. J Nanopart Res 15, 1318 (2013). https://doi.org/10.1007/s11051-012-1318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1318-2

Keywords

Navigation