Skip to main content
Log in

Applications of polymeric micelles with tumor targeted in chemotherapy

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Polymeric micelles (PMs) have gained more progress as a carrier system with the quick development of biological and nanoparticle techniques. In particular, PMs with smart targeting can deliver anti-cancer drugs directly into tumor cells at a sustained rate. PMs with core–shell structure (with diameters of 10 ~ 100 nm) have been prepared by a variety of biodegradable and biocompatible polymers via a self-assembly process. The preparation of polymeric micelles with stimuli-responsive block copolymers or modification of target molecules on polymeric micelles’ surface are able to significantly improve the efficiency of drug delivery. Polymeric micelles, which have been considered as a novel promising drug carrier for cancer therapeutics, are rapidly evolving and being introduced in an attempt to overcome several limitations of traditional chemotherapeutics, including water solubility, tumor-specific accumulation, anti-tumor efficacy, and non-specific toxicity. This review describes the preparation of polymeric micelles and the targeted modification which greatly enhance the effects of chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agut W, Brulet A, Schatz C, Taton D, Lecommandoux S (2010) pH and temperature responsive polymeric micelles and polymersomes by self-assembly of poly [2-(dimethylamino) ethyl methacrylate]-b-Poly (glutamic acid) double hydrophilic block copolymers. Langmuir 26:10546–10554

    Article  CAS  Google Scholar 

  • Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) New frontiers in nanotechnology for cancer treatment. Urol Oncol 26:74–85

    Article  CAS  Google Scholar 

  • Bae YH (2009) Drug targeting and tumor heterogeneity. J Control Release 133:2–3

    Article  CAS  Google Scholar 

  • Böhmer MR, Klibanov AL, Tiemann K, Hall CS, Gruell H, Steinbach OC (2009) Ultrasound triggered image-guided drug delivery. Eur J Radiol 70:242–253

    Article  Google Scholar 

  • Boisseau P, Loubaton B (2011) Nanomedicine, nanotechnology in medicine. CR Phys 12:620–636

    Article  CAS  Google Scholar 

  • Brewer E, Coleman J, Lowman A (2011) Emerging technologies of polymeric nanoparticles in cancer drug delivery. J Nanomater. doi:10.1155/2011/408675

    Google Scholar 

  • Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823. doi:10.1038/nnano.2011.166

    Article  CAS  Google Scholar 

  • Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146. http://dx.doi.org/10.1016/j.jconrel.2010.08.027

  • Eckman AM, Tsakalozou E, Kang NY, Ponta A, Bae Y (2012) Drug release patterns and cytotoxicity of PEG-poly (aspartate) block copolymer micelles in cancer cells. Pharm Res 29:1755–1767

    Article  CAS  Google Scholar 

  • Finger EC, Giaccia AJ (2010) Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metast Rev 29:285–293. doi:10.1007/s10555-010-9224-5

    Article  CAS  Google Scholar 

  • Fournier E, Dufresne MH, Smith DC, Ranger M, Leroux JC (2004) A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharm Res 21:962–968

    Article  CAS  Google Scholar 

  • Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188

    Google Scholar 

  • Gong J, Chen M, Zheng Y, Wang S, Wang Y (2012) Polymeric micelles drug delivery system in oncology. J Control Release 159:312–323. http://dx.doi.org/10.1016/j.jconrel.2011.12.012

    Google Scholar 

  • Gourevich D, Gerold B, Arditti F, Xu D, Liu D, Volovick A, Wang L, Medan Y, Gnaim J, Prentice P (2012) Ultrasound activated nano-encapsulated targeted drug delivery and tumour cell poration. Nano Biotechnol Biomed Diagn Res 733:135–144

    Article  Google Scholar 

  • Grande R, Carvalho AJF (2011) Compatible ternary blends of chitosan/poly (vinyl alcohol)/poly (lactic acid) produced by oil-in-water emulsion processing. Biomacromolecules 12:907–914

    Article  CAS  Google Scholar 

  • Gullotti E, Yeo Y (2009) Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 6:1041–1051

    Article  CAS  Google Scholar 

  • Hammond PT (2011) Virtual issue on nanomaterials for drug delivery. ACS Nano 5:681–684. doi:10.1021/Nn2003508

    Article  CAS  Google Scholar 

  • He J, Zhou Z, Fan Y, Zhou X, Du H (2011) Sustained release of low molecular weight heparin from PLGA microspheres prepared by a solid-in-oil-in-water emulsion method. J Microencapsul 28:763–770

    Article  CAS  Google Scholar 

  • Hua SH, Li YY, Liu Y, Xiao W, Li C, Huang FW, Zhang XZ, Zhuo RX (2010) Self-assembled micelles based on PEG-polypeptide hybrid copolymers for drug delivery. Macromol Rapid Comm 31:81–86. doi:10.1002/marc.200900473

    Article  CAS  Google Scholar 

  • Hui G, Ma Y, Lu X, Liang Y, Chen B, Ma J (2011) pH-responsive nano-assemblies of amino poly (glycerol methacrylate). Eur Polym J 47:1232–1239

    Article  CAS  Google Scholar 

  • Jin Q, Liu G, Ji J (2010) Preparation of reversibly photo-cross-linked nanogels from pH-responsive block copolymers and use as nanoreactors for the synthesis of gold nanoparticles. Eur Polym J 46:2120–2128

    Article  CAS  Google Scholar 

  • Jones MC, Leroux JC (1999) Polymeric micelles-a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111

    Article  CAS  Google Scholar 

  • Jungnickel C, Łuczak J, Ranke J, Fernández JF, Müller A, Thöming J (2008) Micelle formation of imidazolium ionic liquids in aqueous solution. Colloid Surf A Physicochem Eng Asp 316:278–284

    Article  CAS  Google Scholar 

  • Katsogiannou M, Peng L, V Catapano C, Rocchi P (2011) Active-targeted nanotherapy strategies for prostate cancer. Curr Cancer Drug Targets 11:954–965. http://dx.doi.org/10.2174/156800911797264770

    Google Scholar 

  • Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med 6:714–729. http://dx.doi.org/10.1016/j.nano.2010.05.005

  • Kim S, Lee J (2010) Effective polymeric dispersants for vacuum, convection and freeze drying of drug nanosuspensions. Int J Pharm 397:218–224

    Article  CAS  Google Scholar 

  • Kim GJ, Nie S (2005) Targeted cancer nanotherapy. Mater Today 8:28–33

    Article  Google Scholar 

  • Kim E, Jung Y, Choi H, Yang J, Suh JS, Huh YM, Kim K, Haam S (2010a) Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 31:4592–4599

    Article  CAS  Google Scholar 

  • Kim JK, Yang SY, Lee Y, Kim Y (2010b) Functional nanomaterials based on block copolymer self-assembly. Prog Polym Sci 35:1325–1349

    Article  CAS  Google Scholar 

  • Kim S, Shi Y, Kim JY, Park K, Cheng JX (2010c) Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv 7:49–62. doi:10.1517/17425240903380446

    Article  CAS  Google Scholar 

  • Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K (1997) Block copolymer micelles for drug delivery: loading and release of doxorubicin. J Control Release 48:195–201

    Article  CAS  Google Scholar 

  • Lee H, Fonge H, Hoang B, Reilly RM, Allen C (2010) The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol Pharmaceut 7:1195–1208

    Article  CAS  Google Scholar 

  • Liang H, Tang J, Halliwell M (2010) Sonoporation, drug delivery, and gene therapy. P I Mech Eng H 224:343–361

    Article  Google Scholar 

  • Liao C, Sun Q, Liang B, Shen J, Shuai X (2010) Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 80:699–705

    Google Scholar 

  • Lin JP, Zhu JQ, Chen T, Lin SL, Cai CH, Zhang LS, Zhuang Y, Wang XS (2009) Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials 30:108–117

    Article  CAS  Google Scholar 

  • Liu F, Park JY, Zhang Y, Conwell C, Liu Y, Bathula SR, Huang L (2010) Targeted cancer therapy with novel high drug-loading nanocrystals. J Pharm Sci 99:3542–3551

    Article  CAS  Google Scholar 

  • Liu Y, Sun J, Cao W, Yang J, Lian H, Li X, Sun Y, Wang Y, Wang S, He Z (2011) Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm 421:160–169

    Article  CAS  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284. http://dx.doi.org/10.1016/S0168-3659(99)00248-5

    Google Scholar 

  • Matsumura Y (2010) Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Adv Drug Deliv Rev 63:184–192

    Article  Google Scholar 

  • Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 100:572–579

    Article  CAS  Google Scholar 

  • Mikhail AS, Allen C (2009) Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release 138:214-223. http://dx.doi.org/10.1016/j.jconrel.2009.04.010

  • Minko T (2012) Receptor mediated delivery systems for cancer therapeutics. Fundam Appl Contr Release Drug Deliv 4:329–355

    Article  Google Scholar 

  • Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomed Nanotechnol Biol Med 6:9-24. http://dx.doi.org/10.1016/j.nano.2009.04.008

  • Miyata K, Christie RJ, Kataoka K (2010) Polymeric micelles for nano-scale drug delivery. React Funct Polym. doi:10.1016/j.reactfunctpolym.2010.10.009

    Google Scholar 

  • Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J. doi:10.1016/j.jsps.2011.04.001

    Google Scholar 

  • Nakayama M, Okano T (2011) Multi-targeting cancer chemotherapy using temperature-responsive drug carrier systems. React Funct Polym. doi:10.1016/j.reactfunctpolym.2010.08.006

    Google Scholar 

  • Parveen S, Misra R, Sahoo SK (2011) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotechnol Biol Med 8:147–166. http://dx.doi.org/10.1016/j.nano.2011.05.016

  • Pasut G, Veronese FM (2009) PEG conjugates in clinical development or use as anticancer agents: An overview. Adv Drug Deliv Rev 61:1177–1188. http://dx.doi.org/10.1016/j.addr.2009.02.010

  • Patravale V, Date AA, Kulkarni R (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56:827–840

    Article  CAS  Google Scholar 

  • Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. doi:10.1038/nnano.2007.387

    Google Scholar 

  • Polyak K, Haviv I, Campbell IG (2009) Co-evolution of tumor cells and their microenvironment. Trends Genet. doi:10.1016/j.tig.2008.10.012

    Google Scholar 

  • Ponta A, Bae Y (2010) Peg-poly (amino acid) block copolymer micelles for tunable drug release. Pharm Res 27:2330–2342

    Article  CAS  Google Scholar 

  • Qian F, Huang J, Hussain MA (2010) Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci 99:2941–2947

    CAS  Google Scholar 

  • Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    Article  CAS  Google Scholar 

  • Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138:268–276

    Article  CAS  Google Scholar 

  • Ren TB, Feng Y, Zhang ZH, Li L, Li YY (2011) Shell-sheddable micelles based on star-shaped poly (ε-caprolactone)-SS-poly (ethyl glycol) copolymer for intracellular drug release. Soft Matter 7:2329–2331

    Article  CAS  Google Scholar 

  • Seigneuric R, Markey L, Nuyten SA, Dubernet DC, Evelo TAC, Finot E, Garrido C (2010) From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med 10:640–652

    Article  CAS  Google Scholar 

  • Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M (2010) Multi-stage delivery nano-particle systems for therapeutic applications. BBA-Gen subjects 1810:317–329. http://dx.doi.org/10.1016/j.bbagen.2010.05.004

  • Simnick AJ, Amiram M, Liu W, Hanna G, Dewhirst MW, Kontos CD, Chilkoti A (2011) In vivo tumor targeting by a NGR decorated micelle of a recombinant diblock copolypeptide. J Control Release 155:144–151

    Article  CAS  Google Scholar 

  • Song Z, Feng R, Sun M, Guo C, Gao Y, Li L, Zhai G (2011) Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci 354:116–123

    Article  CAS  Google Scholar 

  • Soppimath KS, Tan DCW, Yang YY (2005) pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery. Adv Mater 17:318–323

    Article  CAS  Google Scholar 

  • Stohrer M, Boucher Y, Stangassinger M, Jain RK (2000) Oncotic pressure in solid tumors is elevated. Cancer Res 60:4251–4255

    CAS  Google Scholar 

  • Strehlitz B, Reinemann C, Linkorn S, Stoltenburg R (2011) Aptamers for pharmaceuticals and their application in environmental analytics. Bioanal Rev 4:1–30. doi:10.1007/s12566-011-0026-1

    Article  Google Scholar 

  • Talekar M, Kendall J, Denny W, Garg S (2011) Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drug 22:949–962. doi:10.1097/CAD.0b013e32834a4554

    Article  CAS  Google Scholar 

  • Talelli M, Hennink WE (2011) Thermosensitive polymeric micelles for targeted drug delivery. Nanomedicine. doi:10.2217/nnm.11.91

    Google Scholar 

  • Talelli M, Rijcken CJF, Oliveira S, der Meel R, Henegouwen PMP, Lammers T, van Nostrum CF, Storm G, Hennink WE (2011) Nanobody-shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting. J Control Release 151:183–192

    Article  CAS  Google Scholar 

  • Tanaka T, Decuzzi P, Cristofanilli M, Sakamoto JH, Tasciotti E, Robertson FM, Ferrari M (2009) Nanotechnology for breast cancer therapy. Biomed Microdevices 11:49–63

    Article  CAS  Google Scholar 

  • Torchilin VP (2010) Antinuclear antibodies with nucleosome-restricted specificity for targeted delivery of chemotherapeutic agents. Ther Deliv 2:257–272. doi:10.4155/TDE.10.30

    Article  Google Scholar 

  • Wang X, Yang L, Chen ZG, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58:97–110

    Article  Google Scholar 

  • Wang L, Zeng R, Li C, Qiao RZ (2009) Self-assembled polypeptide-block-poly(vinylpyrrolidone) as prospective drug-delivery systems. Colloid Surf B 74:284–292

    Article  CAS  Google Scholar 

  • Wang X, Wang B, Zhang Q (2011) Anti-tumor targeted drug delivery systems mediated by aminopeptidase N/CD13. Acta Pharm Sin B 1:80–83. http://dx.doi.org/10.1016/j.apsb.2011.06.002

  • Wei H, Cheng SX, Zhang XZ, Zhuo RX (2009) Thermo-sensitive polymeric micelles based on poly (<i>N</i>-isopropylacrylamide) as drug carriers. Prog Polym Sci 34:893–910

    Article  CAS  Google Scholar 

  • Xiao L, Xiong X, Sun X, Zhu Y, Yang H, Chen H, Gan L, Xu H, Yang X (2011) Role of cellular uptake in the reversal of multidrug resistance by PEG-b-PLA polymeric micelles. Biomaterials 32:5148–5157

    Article  CAS  Google Scholar 

  • Xiao Z, Frieder J, Teply BA, Farokhzad OC (2012) Aptamer conjugates: emerging delivery platforms for targeted cancer therapy. Drug Deliv Oncol 1263–1281. doi:10.1002/9783527634057.ch39

  • Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62:1064–1079

    Article  CAS  Google Scholar 

  • Yang M, Wang P, Huang CY, Ku MS, Liu H, Gogos C (2010) Solid dispersion of acetaminophen and poly (ethylene oxide) prepared by hot-melt mixing. Int J Pharm 395:53–61

    Article  CAS  Google Scholar 

  • Yang K, Yang CH, Li Z (2011) Synthesis and Characterization of PVA/MMT Porous Nanocomposite Prepared by Directional Freeze-Drying Method. Adv Material Res 197:253–260

    Article  Google Scholar 

  • Yin H, Bae YH (2009) Physicochemical aspects of doxorubicin-loaded pH-sensitive polymeric micelle formulations from a mixture of poly (l-histidine)-b-poly (l-lactide)-b-poly (ethylene glycol). Eur J Pharm Biopharm 71:223–230

    Article  CAS  Google Scholar 

  • Yokoyama M (2010) Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv 7:145–158

    Article  CAS  Google Scholar 

  • Yokoyama M (2011) Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors. J Exp Clin Med 3:151–158. http://dx.doi.org/10.1016/j.jecm. 2011.06.002

    Google Scholar 

  • Yokoyama M, Kwon GS, Okano T, Sakurai Y, Seto T, Kataoka K (1992) Preparation of micelle-forming polymer drug conjugates. Bioconjug Chem 3:295–301

    Article  CAS  Google Scholar 

  • Yoshitomi T, Hirayama A, Nagasaki Y (2011) The ROS scavenging and renal protective effects of pH-responsive nitroxide radical-containing nanoparticles. Biomaterials 32:8021–8028

    Article  CAS  Google Scholar 

  • You JO, Almeda D, Ye GJC, Auguste DT (2010) Bioresponsive matrices in drug delivery. J Biol Eng 4:15. doi:10.1186/1754-1611-4-15

    Article  CAS  Google Scholar 

  • Zaman NT, Yang YY, Ying JY (2010) Stimuli-responsive polymers for the targeted delivery of paclitaxel to hepatocytes. Nano Today 5:9–14

    Article  CAS  Google Scholar 

  • Zhan C, Gu B, Xie C, Li J, Liu Y, Lu W (2010) Cyclic RGD conjugated poly (ethylene glycol)-co-poly (lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release 143:136–142

    Article  CAS  Google Scholar 

  • Zhang L, Zhu S, Qian L, Pei Y, Qiu Y, Jiang Y (2011) RGD-modified PEG-PAMAM-DOX Conjugates: in vitro and In vivo Studies for Glioma. Eur J Pharm Biopharm 79:232–240

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinli Liu.

Additional information

Hui Ding and Xiaojun Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, H., Wang, X., Zhang, S. et al. Applications of polymeric micelles with tumor targeted in chemotherapy. J Nanopart Res 14, 1254 (2012). https://doi.org/10.1007/s11051-012-1254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1254-1

Keywords

Navigation