Skip to main content

Advertisement

Log in

Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The detection of magnetically labeled molecules and cells involves three essential parameters: sensitivity, spatial resolution, and molecular specificity. We report on the use of atomic magnetometry and its derivative techniques to achieve high performance in terms of all these parameters. With a sensitivity of 80 fT/√Hz for dc magnetic fields, we show that 7,000 streptavidin-conjugated magnetic microparticles magnetized by a permanent magnet produce a magnetic field of 650 pT; this result predicts that a single such particle can be detected during one second of signal averaging. Spatial information is obtained using a scanning magnetic imaging scheme. The spatial resolution is 20 μm with a detection distance of more than 1 cm; this distance is much longer than that in previous reports. The molecular specificity is achieved using force-induced remnant magnetization spectroscopy, which currently uses an atomic magnetometer for detection. As an example, we perform measurement of magnetically labeled human CD4+ T cells, whose count in the blood is the diagnostic criterion for human immunodeficiency virus infection. Magnetic particles that are specifically bound to the cells are resolved from nonspecifically bound particles and quantitatively correlate with the number of cells. The magnetic particles have an overall size of 2.8 μm, with a magnetic core in nanometer regime. The combination of our techniques is predicted to be useful in molecular and cellular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta VM, Ledbetter MP, Rochester SM, Budker D, Kimball DF, Hovde DC, Gawlik W, Pustelny S, Zachorowski J, Yashchuk VV (2006) Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range. Phys Rev A 73:053404

    Article  Google Scholar 

  • Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753

    Article  CAS  Google Scholar 

  • Bouchard L-S, Anwar MS, Liu GL, Hann B, Xie ZH, Gray JW, Wang X, Pines A, Chen FF (2009) Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc Natl Acad Sci USA 106:4085–4089

    Article  CAS  Google Scholar 

  • Budker D, Kimball DF, Rochester SM, Yashchuk VV, Zolotorev M (2000) Sensitive magnetometry based on nonlinear magneto-optical rotation. Phys Rev A 62:043403

    Article  Google Scholar 

  • Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  CAS  Google Scholar 

  • Chemla YR, Grossman HL, Poon Y, McDermott R, Stevens R, Alper MD, Clarke J (2000) Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc Natl Acad Sci USA 97:14268–14272

    Article  CAS  Google Scholar 

  • Cheng X, Irimia D, Dixon M, Sekine K, Demirci U, Zamir L, Tompkins RG, Rodrigues W, Toner M (2007) Lap Chip 7:170–178

    Article  CAS  Google Scholar 

  • d’Ettorre G, Paiardini M, Ceccarelli G, Silvestri G, Vullo V (2011) HIV-associated immune activation: from bench to bedside. AIDS Res Hum Retrovir 27:355–364

    Article  Google Scholar 

  • Dang HB, Maloof AC, Romalis MV (2010) Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl Phys Lett 97:151110

    Article  Google Scholar 

  • Debbage P, Jaschke W (2008) Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol 130:845–875

    Article  CAS  Google Scholar 

  • Fong LE, Holzer JR, McBride KK, Lima EA, Baudenbacher F, Radparvar M (2005) High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications. Rev Sci Instrum 76:053703

    Article  Google Scholar 

  • Garcia NCL, Yu D, Yao L, Xu SJ (2010) Optical atomic magnetometer at body temperature for magnetic particle imaging and nuclear magnetic resonance. Opt Lett 5:661–663

    Article  Google Scholar 

  • Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217

    Article  CAS  Google Scholar 

  • Goodwill PW, Conolly SM (2011) Multidimensional x-space magnetic particle imaging. IEEE Trans Med Imaging 30:1581–1590

    Article  Google Scholar 

  • Haun JB, Castro CM, Wang R, Peterson VM, Marinelli BS, Lee H, Weissleder R (2011) Micro-NMR for rapid molecular analysis of human tumor samples. Sci Transl Med 3:71ra16

    Article  Google Scholar 

  • Heim E, Ludwig F, Schilling M (2009) Binding assays with streptavidin-functionalized superparamagnetic nanoparticles and biotinylated analytes using fluxgate mangetorelaxometry. J Magn Magn Mater 321:1628–1631

    Article  CAS  Google Scholar 

  • Holmberg A, Blomstergren A, Nord O, Lukacs M, Lundeberg J, Uhlen M (2005) The biotin–streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26:501–510

    Article  CAS  Google Scholar 

  • Horng HE, Yang SY, Huang YW, Jiang WQ, Hong CY, Yang HC (2005) Nanomagnetic particles for SQUID-based magnetically labeled immunoassay. IEEE Trans Appl Supercond 15:668–671

    Article  CAS  Google Scholar 

  • Kominis IK, Kornack TW, Allred JC, Romalis MV (2003) A subfemtotesla multichannel atomic magnetometer. Nature 422:596–599

    Article  CAS  Google Scholar 

  • Leigh DR, Steinert S, Moore LR, Chalmers JJ, Zborowski M (2005) Cell tracking velocimetry as a tool for defining saturation binding of magnetically conjugated antibodies. Cytom Part A 66A:103–108

    Article  CAS  Google Scholar 

  • Leuschner C, Kumar CSSR, Hansel W, Soboyejo WO, Zhou J, Hormes J (2006) LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res Treat 99:163–176

    Article  CAS  Google Scholar 

  • Margolis DM (2011) Eradication therapies for HIV infection: time to begin again. AIDS Res Hum Retrovir 27:347–353

    Article  Google Scholar 

  • Maser D, Pandey S, Ring H, Ledbetter MP, Knappe S, Kitching J, Budker D (2011) Note: detection of a single cobalt microparticle with a microfabricated atomic magnetometer. Rev Sci Instrum 82:086112

    Article  CAS  Google Scholar 

  • Misra RDK (2008) Magnetic nanoparticle carrier for targeted drug delivery: perspective, outlook and design. Mater Sci Technol 24:1011–1019

    Article  CAS  Google Scholar 

  • Nan X, Sims PA, Xie XS (2008) Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. ChemPhysChem 9:707–712

    Article  CAS  Google Scholar 

  • Nikitin MP, Vetoshko PM, Brusentsov NA, Nikitin PI (2009) Highly sensitive room-temperature method of non-invasive in vivo detection of magnetic nanoparticles. J Magn Magn Mater 321:1658–1661

    Article  CAS  Google Scholar 

  • Osterfeld SJ, Yu H, Gaster RS, Caramuta S, Xu L, Han SJ, Hall DA, Wilson RJ, Sun S, White RL, Davis RW, Pourmand N, Wang SX (2008) Multiplex protein assays based on real-time magnetic nanotag sensing. Proc Natl Acad Sci USA 105:20637–20640

    Article  CAS  Google Scholar 

  • Pannetier M, Fermon C, Le Goff G, Simola J, Kerr E (2004) Femtotesla magnetic field measurement with magnetoresistive sensors. Science 304:1648–1650

    Article  CAS  Google Scholar 

  • Picot J, Guerin CL, Kim CLV, Boulanger CM (2012) Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology 64:109–130

    Article  Google Scholar 

  • Saar BG, Zeng Y, Freudiger CW, Liu YS, Himmel ME, Xie XS, Ding SY (2010) Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy. Angew Chem Int Ed 49:5476–5479

    Article  CAS  Google Scholar 

  • Seltzer SJ, Meares PJ, Romalis MV (2007) Synchronous optical pumping of quantum revival beads for atomic magnetometry. Phys Rev A 75:051407(R)

    Article  Google Scholar 

  • Shah V, Knappe S, Schwindt PDD, Kitching J (2007) Subpicotesla atomic magnetometry with a microfabricated vapor cell. Nat Photon 1:649–652

    Article  CAS  Google Scholar 

  • Shapiro HM (2003) Practical flow cytometry, 4th edn. Wiley-Liss, New York

    Book  Google Scholar 

  • Shi H, He X, Wang K, Wu X, Ye X, Guo Q, Tan W, Qing Z, Yang X, Zhou B (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci USA 108:3900–3905

    Article  CAS  Google Scholar 

  • Sivagnanam V, Song B, Vandevyver C, Bünzli JCG, Gijs MAM (2010) Selective breast cancer cell capture, culture, and immunocytochemical analysis using self-assembled magnetic bead patterns in a microfluidic chip. Langmuir 26:6091–6096

    Article  CAS  Google Scholar 

  • Vigneault F, Woods M, Buzon MJ, Li C, Pereyra F, Crosby SD, Rychert J, Church G, Marinez-Picado J, Rosenberg ES, Telenti A, Yu XG, Lichterfeld M (2011) Transcriptional profiling of CD4 T cells identifies distinct subgroup of HIV-1 elite controllers. J Virol 85:3015–3019

    Article  CAS  Google Scholar 

  • Xu SJ, Rochester SM, Yashchuk VV, Donaldson MH, Budker D (2006) Construction and application of an atomic magnetic gradiometer based on nonlinear magneto-optical rotation. Rev Sci Instrum 77:083106

    Article  Google Scholar 

  • Yang SY, Lien KY, Huang KJ, Lei HY, Lee GB (2008) Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection. Biosens Bioelectron 24:855–862

    Article  CAS  Google Scholar 

  • Yao L, Xu SJ (2009) Long-range, high-resolution magnetic imaging of nanoparticles. Angew Chem Int Ed 48:5679–5682

    Article  CAS  Google Scholar 

  • Yao L, Xu SJ (2011) Force-induced remnant magnetization spectroscopy for specific magnetic imaging of molecules. Angew Chem Int Ed 50:4407–4409

    Article  CAS  Google Scholar 

  • Yao L, Jamison AC, Xu SJ (2010) Scanning imaging of magnetic nanoparticles for quantitative molecular imaging. Angew Chem Int Ed 49:7493–7496

    Article  CAS  Google Scholar 

  • Ye T, Fu D, Warren WS (2009) Nonlinear absorption microscopy. Photochem Photobiol 85:631–645

    Article  CAS  Google Scholar 

  • Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7:657–667

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from the US National Science Foundation (ECCS-1028328) is acknowledged. This study is supported in part by the Texas Center for Superconductivity at the University of Houston and a GEAR Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoujun Xu.

Additional information

This article is part of the topical collection on nanomaterials in energy, health and environment

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, D., Ruangchaithaweesuk, S., Yao, L. et al. Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer. J Nanopart Res 14, 1135 (2012). https://doi.org/10.1007/s11051-012-1135-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1135-7

Keywords

Navigation