Skip to main content
Log in

Stabilization of gold and silver nanowires inside cyclo[8]thiophene nanoaggregates: a theoretical study

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The stability and electronic properties of gold and silver nanowires (NWs) containing up to 12 atoms trapped inside cyclo[8]thiophenes (CT8) nanoaggregates have been modeled using M06 functional, 3-21G* basis set for nonmetallic atoms; LANL2DZ pseudopotential basis set for metals were applied for optimization; and 6-31G* and LANL2DZ basis sets for single point calculations, respectively. It has been found that the formation of (NW) inside CT8 nanoaggregates is a thermodynamically favorable process and it could be a potentially useful method of metal NW stabilization. The inclusion of metal NW inside CT8 nanoaggregates increases significantly the binding energy between macrocycles and changes the geometry of NW compared to that of free-standing clusters due to the size restriction imposed by the nanoaggregate cavity. The binding energies per metal atom reach a maximum for three metal atoms and then start decreasing with a possible stabilization for large NW. It was found that the binding energies between silver NW and CT8 nanoaggregate are lower than those of gold NW and that in the case of gold NW containing more than four metal atoms the S0 → S1 excitation involves almost exclusively electrons of metal NW. On the other hand, in the case of silver NW the excitation involves the electron transfer from the NW to the CT8 nanoaggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajayan PM, Iijima S (1993) Capillarity-induced filling of carbon nanotubes. Nature 361:333–334. doi:10.1038/361333a0

    Article  CAS  Google Scholar 

  • Baetzold RC (1971) Calculated properties of metal aggregates. I. Diatomic molecules. J Chem Phys 55:4355–4363. doi:10.1063/1.1676760

    Article  CAS  Google Scholar 

  • Brandbyge M, Mozos J-L, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65:165401. doi:10.1103/PhysRevB.65.165401

    Article  Google Scholar 

  • Burghard M (2005) Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surf Sci Rep 58:1–109. doi:10.1016/j.surfrep.2005.07.001

    CAS  Google Scholar 

  • Carroll RL, Gorman CB (2002) The genesis of molecular electronics. Angew Chem Int Ed 41:4378–4400. doi:10.1002/1521-3773(20021202)41:23

    Article  Google Scholar 

  • Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A, Bar-Joseph I (2005) Measurement of the conductance of single conjugated molecules. Nature 436:677–680. doi:10.1038/nature03898

    Article  CAS  Google Scholar 

  • Flores P, Guadarrama P, Ramos E, Fomine S (2008) Tubular aggregates of cyclic oligothiophenes. A theoretical study. J Phys Chem A 112:3996–4003. doi:10.1021/jp710654k

    Article  CAS  Google Scholar 

  • Fournier R (2001) Theoretical study of the structure of silver clusters. J Chem Phys 115:2165–2177. doi:10.1063/1.1383288

    Article  CAS  Google Scholar 

  • Frisch MJ et al (2009) Gaussian 09, revision B.01. Gaussian, Inc., Wallingford

    Google Scholar 

  • Fuhrmann G, Debaerdemaeker T, Bäuerle P (2003) C–C bond formation through oxidatively induced elimination of platinum complexes—a novel approach towards conjugated macrocycles. Chem Commun 948–949. doi:10.1039/B300542A

  • Grobert N, Terrones M, Osborne AJ, Terrones H, Hsu WK, Trasobares S, Zhu YQ, Hare JP, Kroto HW, Walton RM (1998) Thermolysis of C60 thin films yields Ni-filled tapered nanotubes. Appl Phys A 67:595–598

    Article  CAS  Google Scholar 

  • Grobert N, Hsu WK, Zhu YQ, Hare JP, Kroto HW, Walton DRM, Terrones M, Terrones H, Redlich Ph, Rühle M, Escudero R, Morales F (1999) Enhanced magnetic coercivities in Fe nanowires. Appl Phys Lett 75:3363–3365. doi:10.1063/1.125352

    Article  CAS  Google Scholar 

  • Guerret-Piécourt C, Le Bouar Y, Loiseau A, Pascard H (1994) Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 372:761–765. doi:10.1038/372761a0

    Article  Google Scholar 

  • Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes top. Curr Chem 245:193–237. doi:10.1007/b98169

    CAS  Google Scholar 

  • Hsin YL, Hwang KC, Chen FR, Kai JJ (2001) Production and in situ metal filling of carbon nanotubes in water. Adv Mater 13:830–833. doi:10.1002/1521-4095(200106)13:11

    Article  CAS  Google Scholar 

  • Hu J, Bando Y, Zhan J, Zhi C, Golberg D (2006) Carbon nanotubes as nanoreactors for fabrication of single-crystalline Mg3N2 nanowires. Nano Lett 6:1136–1140. doi:10.1021/nl060245v

    Article  CAS  Google Scholar 

  • Ivanovskaya VV, Makurin YuN, Ivanovskii AL (2005) Fullerene peapods and related nanomaterials: synthesis, structure and electronic structure. In: Diudea M (ed) Nanostructures: novel architectures. Nova Science Publishers, New York, pp 9–24

    Google Scholar 

  • Kondo Y, Takayanagi K (2000) Synthesis and characterization of helical multi-shell gold nanowires. Science 289:606–608. doi:10.1126/science.289.5479.606

    Article  CAS  Google Scholar 

  • Kubatkin S, Danilov A, Hjort M, Cornil J, Brédas J-L, Stuhr-Hansen N, Hedegård P, Bjórnholm T (2003) Single-electron transistor of a single organic molecule with access to several redox states. Nature 425:698–701. doi:10.1038/nature02010

    Article  CAS  Google Scholar 

  • Leonhardt A, Ritschel A, Kozhuharova R, Graff A, Mühl T, Huhle R, Mönch I, Elefant D, Schneider CM (2003) Synthesis and properties of filled carbon nanotubes. Diam Relat Mater 12:790–793. doi:10.1016/S0925-9635(02)00325-4

    Article  CAS  Google Scholar 

  • Loiseau A, Pascard H (1996) Synthesis of long carbon nanotubes filled with Se, S, Sb and Ge by the arc method. Chem Phys Lett 256:246–252

    Article  CAS  Google Scholar 

  • Martin RL (2003) Natural transition orbitals. J Chem Phys 118:4775–4777. doi:10.1063/1.1558471

    Article  CAS  Google Scholar 

  • Seminario JM, Zacarias AG, Tour JM (2000) Theoretical study of a molecular resonant tunneling diode. J Am Chem Soc 122:3015–3020. doi:10.1021/ja992936h

    Article  CAS  Google Scholar 

  • Setlur AA, Lauerhaas JM, Dai JY, Chang RPH (1996) A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires. Appl Phys Lett 69:345–347. doi:10.1063/1.118055

    Article  CAS  Google Scholar 

  • Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order—N materials simulation. J Phys Condens Matter 14:2745–2779. doi:10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  • Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T (2009) Observation of molecular orbital gating. Nature 462:1039–1043. doi:10.1038/nature08639

    Article  CAS  Google Scholar 

  • Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63:245407. doi:10.1103/PhysRevB.63.245407

    Article  Google Scholar 

  • Terrones H, Lopez-Urias F, Munoz-Sandoval E, Rodriguez-Manzo JA, Zamudio A, Elias AL, Terrones M (2006) Magnetism in Fe-based and carbon nanostructures: theory and applications. Solid State Sci 8:303–320

    Article  CAS  Google Scholar 

  • Tour JM (2000) Molecular electronics. Synthesis and testing of components. Acc Chem Res 33:791–804. doi:10.1021/ar0000612

    Article  CAS  Google Scholar 

  • Verhaegen G, Stafford FE, Goldfinger P, Ackerman M (1962) Correlation of dissociation energies of gaseous molecules and of heats of vaporization of solids. Part 1.—Homonuclear diatomic molecules. Trans Faraday Soc 58:1926–1938. doi:10.1039/TF9625801926

    Article  CAS  Google Scholar 

  • Wang J, Wang G, Zhao J (2002) Density-functional study of Au n (n = 2–20) clusters: lowest-energy structures and electronic properties. Phys Rev B 66:035418. doi:10.1103/PhysRevB.66.035418

    Article  Google Scholar 

  • Yanai T, Tew D, Handy N (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. doi:10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  • Yu LH, Natelson D (2004) The Kondo effect in C60 single-molecule transistors. Nano Lett 4:79–83. doi:10.1021/nl034893f

    Article  CAS  Google Scholar 

  • Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101. doi:10.1063/1.2370993

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from CONACYT Mexico (Grant 151277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serguei Fomine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomine, S. Stabilization of gold and silver nanowires inside cyclo[8]thiophene nanoaggregates: a theoretical study. J Nanopart Res 14, 979 (2012). https://doi.org/10.1007/s11051-012-0979-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0979-1

Keywords

Navigation