Skip to main content
Log in

Encapsulation and controlled release from core–shell nanoparticles fabricated by plasma polymerization

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Core–shell nanostructures have been synthesized by plasma deposition in radio-frequency plasma reactor. Silica and KCl nanoparticles were encapsulated by deposition of isopropanol-based films of amorphous hydrogenated carbon. Through control of the deposition time, under constant deposition rate of 1 nm/min, particles are encapsulated in a layer of plasma polymer with thickness between 15 and 100 nm. Films are robust, chemically inert, thermally stable up to 250°C. The permeability of the shells is determined by depositing films of various thickness onto KCl nanoparticles and monitoring the dissolution of the core in aqueous solution. The dissolution profile is characterized by an initial rapid release, followed by a slow release that lasts up to 30 days for the thickest films. The profile is analyzed by Fickian diffusion through a spherical matrix. We find that this model captures very accurately the entire release profile except for the first 12 hours during which, the dissolution rate is higher than that predicted by the model. The overall diffusion coefficient for the dissolution of KCl is 3 × 10−21 m2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andhariya N, Chudasama B, Mehta R, Upadhyay R (2011) Nanoengineering of methylene blue loaded silica encapsulated magnetite nanospheres and nanocapsules for photodynamic therapy. J Nanopart Res 13:3619–3631

    Article  CAS  Google Scholar 

  • Arias J, Ruiz M, Gallardo V, Delgado A (2008) Tegafur loading and release properties of magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles. J Control Release 125(1):50–58

    Article  CAS  Google Scholar 

  • Balas F, Manzano M, Horcajada P, Vallet-Regí M (2006) Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc 128(25):8116–8117

    Article  CAS  Google Scholar 

  • Cao J, Matsoukas T (2002) Deposition kinetics on particles in a dusty plasma reactor. J Appl Phys 92:2916

    Article  CAS  Google Scholar 

  • Cao J, Matsoukas T (2004) Synthesis of hollow nanoparticles by plasma polymerization. J Nanopart Res 6(5):447–455

    Article  CAS  Google Scholar 

  • Cao J, Matsoukas T (2005) Nanowire coating by plasma processing. IEEE Trans Plasma Sci 33(2):829–833

    Article  CAS  Google Scholar 

  • Caruso F, Lichtenfeld H, Giersig M, Möhwald H (1998) Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles. J Am Chem Soc 120(33):8523–8524

    Article  CAS  Google Scholar 

  • Chen J, Ding H, Wang J, Shao L (2004) Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials 25(4):723–727

    Article  Google Scholar 

  • Chen L, Xie Z, Hu J, Chen X, Jing X (2007) Enantiomeric PLA–PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J Nanopart Res 9:777–785

    Article  Google Scholar 

  • Choi M (2001) Research in Korea on gas phase synthesis and control of nanoparticles. J Nanopart Res 3:201–211

    Article  CAS  Google Scholar 

  • Chow AHL, Tong H, Chattopadhyay P, Shekunov BY (2007) Particles engineering for pulmonary drug delivery. Pharm Res 24:411–437

    Article  CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  • da Silva Sobrinho AS, Latreche M, Czeremuszkin G, Klemberg-Sapieha JE, Wertheimer M (1998) Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma-enhanced chemical vapor deposition. J Vac Sci Technol 16:3190–3198

    Article  CAS  Google Scholar 

  • Fronheiser J, Balch J, Tsakalakos L (2008) Conformal dielectric films on silicon nanowire arrays by plasma enhanced chemical vapor deposition. J Nanopart Res 10:955–963

    Article  CAS  Google Scholar 

  • Gai S, Yang P, Li C, Wang W, Dai Y, Niu N, Lin J (2010) Synthesis of magnetic, up-conversion luminescent, and mesoporous core–shell-structured nanocomposites as drug carriers. Adv Funct Mater 20:1166–1172

    Article  CAS  Google Scholar 

  • Hadiko G, Han YS, Fuji M, Takahashi M (2005) Synthesis of hollow calcium carbonate particles by the bubble templating method. Mater Lett 59(19–20):2519–2522

    Article  CAS  Google Scholar 

  • Hakim L, King D, Zhou Y, Gump C, George S, Weimer A (2007) Nanoparticle coating for advanced optical, mechanical and rheological properties. Adv Funct Mater 17(16):3175–3181

    Article  CAS  Google Scholar 

  • Hiratsuka A, Muguruma H, Nagata R, Nakamura R, Sato K, Uchiyama S, Karube I (2000) Mass transport behavior of electrochemical species through plasma-polymerized thin film on platinum electrode. J Membr Sci 175:25–34

    Article  CAS  Google Scholar 

  • Hughes GA (2005) Nanostructure-mediated drug delivery. Disease-a-month. Nanomedicine 51(6):342-361

    Google Scholar 

  • Jeo Y, Cheon JB, Kim SH, Nah JW, Lee YM, Sung YK, Akaik T, Cho CS (1998) Clonazepam release from core–shell type nanoparticles in vitro. J Control Release 51:169–178

    Article  Google Scholar 

  • Jono K, Ichikawa H, Miyamoto M, Fukumori Y (2000) A review of particulate design for pharmaceutical powders and their production by spouted bed coating. Powder Technol 113(3):269–277

    Article  CAS  Google Scholar 

  • Karches M, Bayer C, von Rohr PR (1999) A circulating fluidised bed for plasma-enhanced chemical vapor deposition on powders at low temperatures. Surf Coat Technol 116–119:879–885

    Article  CAS  Google Scholar 

  • Kim KS, Kim DJ (2006) Analysis on uniform particle coating by the rotating cylindrical PCVD reactor. J Aerosol Sci 37:1532–1544

    Article  CAS  Google Scholar 

  • Kim DJ, Kang JY, Kim KS (2010) Coating of TiO2 thin films on particles by a plasma chemical vapor deposition process. Adv Powder Technol 21:136–140

    Article  CAS  Google Scholar 

  • Langer R (1990) New methods of drug delivery. Science 249(4976):1527–1533

    Article  CAS  Google Scholar 

  • Leroux JC, Siegel RA (1999) pH-hysteresis of glucose permeability in acid-doped LCST hydrogels: a basis for pulsatile oscillatory drug release. Am Chem Soc 728:98–111

    CAS  Google Scholar 

  • Li Z, Wen L, Shao L, Chen J (2004) Fabrication of porous hollow silica nanoparticles and their applications in drug release control. J Control Release 98(2):245–254

    Article  CAS  Google Scholar 

  • Lin C, Mettersa AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408

    Article  CAS  Google Scholar 

  • Liu B, Lee K (1975) An aerosol generator of hight stability. Am Indus Hyg Assoc J 41:385–398

    Google Scholar 

  • Liu H, Finn N, Yates MZ (2005) Encapsulation and sustained release of a model drug, indomethacin, using CO2-based microencapsulation. Langmuir 21:379–385

    Article  CAS  Google Scholar 

  • Liu F, Wen L, Li Z, Yu W, Sun H, Chen J (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275

    Article  CAS  Google Scholar 

  • Lou X, Archer L, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019

    Article  CAS  Google Scholar 

  • Lou X, Wen X, Deng D, Lee J, Archer L (2008) Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chem Mater 20(20):6562–6566

    Article  CAS  Google Scholar 

  • Marino E, Huijser T, Creyghton Y, van der Heijden A (2007) Synthesis and coating of copper oxide nanoparticles using atmospheric pressure plasmas. Surf Coat Technol 201(22–23):9205–9208. In: Euro CVD 16, 16th European conference on chemical vapor deposition

    Google Scholar 

  • Matsoukas T, Cao J (2004) Film deposition on particles trapped in the sheath of reactive dusty plasma: effect of size distribution. IEEE Trans Plasma Sci 32(2):699–703

    Article  Google Scholar 

  • Nakanishi K, Muguruma H, Karube I (1996) A novel method of immobilizing antibodies on a quartz crystal microbalance using plasma-polymerized films for immunosensors. Anal Chem 68(10):1695–1700

    Article  CAS  Google Scholar 

  • Oehr C (2003) Plasma surface modification of polymers for biomedical use. Nucl Instrum Methods Phys Res Sect B 208:40–47

    Article  CAS  Google Scholar 

  • Peppas B (1993) Controlled release in the food and cosmetics industries. Polym Deliv Syst 520:42–52

    Google Scholar 

  • Ratner BD (1993) Plasma deposition for biomedical applications: A brief review. J Biomater Sci 3(11):3–11

    Google Scholar 

  • Romero-Cano M, Vincent B (2002) Controlled release of 4-nitroanisole from poly(lactic acid) nanoparticles. J Control Release 82:127–135

    Article  CAS  Google Scholar 

  • Salonen J, Laitinen L, Kaukonen A, Tuura J, Björkqvist M, Heikkilä T, Vähä-Heikkilä K, Hirvonen J, Lehto VP (2005) Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs. J Control Release 108(2–3):362–374

    Article  CAS  Google Scholar 

  • Sanchez I, Flamant G, Gauthier D, Flamand R, Badie J, Mazza G (2001) Plasma-enhanced chemical vapor deposition of nitrides on fluidized particles. Powder Technol 120:134–140

    Article  CAS  Google Scholar 

  • Shi D, He P (2004) Surface modifications of nanoparticles and nanotubes by plasma polymerization. Rev Adv Mater Sci 7:97–107

    Article  CAS  Google Scholar 

  • Soppimath K, Aminabhavi T, Kulkarni A, Rudzinski W (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1-2):1–20

    Article  CAS  Google Scholar 

  • Sotiriou GA, Sannomiya T, Teleki A, Krumeich F, Vörös J, Pratsinis SE (2010) Non-toxic dry-coated nanosilver for plasmonic biosensors. Adv Funct Mater 20(24):4250–4257

    Article  CAS  Google Scholar 

  • Tokuyama H, Kato Y (2008) Preparation of poly(n-isopropylacrylamide) emulsion gels and their drug release behaviors. Colloids Surf B 67:92–98

    Article  CAS  Google Scholar 

  • Vos P, Faas MM, Spasojevic M, Sikkema J (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20(4):292–302

    Article  Google Scholar 

  • Wu Z, Jiang Y, Kim T, Lee K (2007) Effects of surface coating on the controlled release of vitamin B1 from mesoporous silica tablets. J Control Release 119(2):215–221

    Article  CAS  Google Scholar 

  • Xu Z, Gu Z, Cheng X, Rasoul F, Whittaker A, Lu G (2011) Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles. J Nanopart Res 13:1253–1264

    Article  CAS  Google Scholar 

  • Yang J, Lee J, Kang J, Lee K, Suh JS, Yoon HG, Huh YM, Haam S (2008) Hollow silica nanocontainers as drug delivery vehicles. Langmuir 24(7):3417–3421

    Article  CAS  Google Scholar 

  • Yasuda H (2005) Luminous chemical vapor deposition and interface engineering, vol 122. Marcel Dekker, New York

    Google Scholar 

  • Yasuda H, Gazicki M (1982) Biomedical applications of plasma polymerization and plasma treatment of polymer surfaces. Biomaterials 3(2):68–77

    Article  CAS  Google Scholar 

  • Zhang Z, Feng S (2006) The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 27:4025–4033

    Article  CAS  Google Scholar 

  • Zhang J, Misra RDK (2007) Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomater 3(6):838–850

    Article  CAS  Google Scholar 

  • Zhang A, Zhang Y, Xing N, Hou K, Guo X (2009) Hollow silica spheres with a novel mesoporous shell perforated vertically by hexagonally arrayed cylindrical nanochannels. Chem Mater 21(18):4122–4126

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant CBET-0651283 from the U.S. National Science Foundation, the Pennsylvania State University Materials Research Institute Nanofabrication Lab, and the National Science Foundation Cooperative Agreement No. 0335765, National Nanotechnology Infrastructure Network, with Cornell University. The authors wish to thank Mahsa Rohani for help in operating the plasma reactor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Themis Matsoukas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahravan, A., Matsoukas, T. Encapsulation and controlled release from core–shell nanoparticles fabricated by plasma polymerization. J Nanopart Res 14, 668 (2012). https://doi.org/10.1007/s11051-011-0668-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0668-5

Keywords

Navigation