Skip to main content
Log in

Core–shell nanophosphor with enhanced NIR–visible upconversion as spectrum modifier for enhancement of solar cell efficiency

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A distinct enhancement of upconversion luminescence from core to core/shell (C/S) structure under low flux near infrared (NIR) excitation at 976 nm has been achieved in lanthanide (Er3+, Yb3+)-doped NaYF4 core with undoped NaYF4 shell nanoparticles (NP). A green chemistry approach has been taken to synthesize monodisperse monophasic C/S NP with the core (~20 nm) and shell (~5 nm) crystallizing into cubic phase. Hydrophobic C/S NP have been further made hydrophilic by coating a transparent SHMP layer without affecting luminescence. C/S (NaYF4: Er, Yb/NaYF4) NP integrated dye-sensitized solar cell indicated 11.9% enhancement in overall conversion efficiency under AM 1.5 conditions, due to NIR–visible spectrum modification by fluorescent NPs. The results indicate great potential of such upconverting C/S nanophosphor in solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angrist SW (1965) Direct energy conversion. Allyn and Bacon Inc, Boston

    Google Scholar 

  • Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–174

    Article  CAS  Google Scholar 

  • Bryan M, Ende V, Aartsa AL, Meijerink A (2009) Lanthanide ions as spectral converters for solar cells. Phys Chem Chem Phys 11:11081–11095

    Google Scholar 

  • Chatterjee DK, Rufaihah AJ, Zhang Y (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29:937–943

    Article  CAS  Google Scholar 

  • Chen GY, Liu HC, Liang HJ, Somesfalean G, Zhang ZG (2008) Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li ions. J Phys Chem C 12:12030–12036

    Article  Google Scholar 

  • Cohen BE (2010) Beyond fluorescence. Nature 467:407–408

    Article  CAS  Google Scholar 

  • Dutta V, Dwivedi C (2010) Process for making nanorods of Zinc oxide and resulting products thereof. Patent application filed: 2163/DEL/2010)

  • Ende M, Aarts L, Meijerink A (2009) Lanthanide ions as spectral converters for solar-cells. Phys Chem Chem Phys 11:11081–11095

    Article  Google Scholar 

  • Fahrenbruch AL, Bube RH (1983) Fundamentals of solar cells. Academic Press Inc, London

    Google Scholar 

  • Gr¨atzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C Photochem Rev 4:145–153

    Article  Google Scholar 

  • Gr¨atzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cell. Inorg Chem 44:6841–6851

    Article  Google Scholar 

  • Heer S, Ko¨mpe K, Güdel HU, Haase M (2004) Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater 16:2102–2105

    Article  CAS  Google Scholar 

  • Kalyanasundaram K, Gr¨atzel M (1998) Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev 177:347–414

    Article  CAS  Google Scholar 

  • Keevers MJ, Green MA (1996) Extended infrared response of silicon solar cells and the impurity photovoltaic effect. Sol Energy Mater Sol Cells 41:195–204

    Article  Google Scholar 

  • Li Z, Zhang Y, Jiang S (2008) Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv Mater 20:4765–4769

    Article  CAS  Google Scholar 

  • Lim SF, Riehn R, Ryu WS, Khanarian N, Tung CK, Tank D, Austin RH (2006) In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Lett 6:169–174

    Article  CAS  Google Scholar 

  • O’Regan B, Gr¨atzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  • Page RH, Schaffers KI, Waide PA, Tassano JB, Payne SA, Krupke WF, Bischel WK (1998) Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium. J Opt Soc Am B 15:996–1008

    Article  CAS  Google Scholar 

  • Park Y et al (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21:4467–4471

    Article  CAS  Google Scholar 

  • Prasad PN (2003) Introduction to biophotonic. Wiley-Interscience, New York

    Book  Google Scholar 

  • Reddy K, Narasimha S, Shareef MAH M, Pandaraiah N (1983) Growth and X-ray study of NaYF4 crystals. J Mater Sci Lett 2:83–84

    Article  CAS  Google Scholar 

  • Rijke F, Zijlmans H, Li S, Vail T, Rapp AK, Niedbala RS, Tanke HJ (2001) Upconverting phosphor reporters for nucleic acid microarrays. Nat Biotechnol 19:273–276

    Article  Google Scholar 

  • Roy DM, Roy RJ (1964) Controlled massively defective crystalline solutions with the fluorite structure. Electrochem Soc 111:421–429

    Article  CAS  Google Scholar 

  • Shalav A, Richards RS, Trupke T, Kra¨mer KW, Güdel HU (2005) Application of NaYF4: Er3+ upconverting phosphors for enhanced near-infrared silicon solar cell response. Appl Phys Lett 86:013505–013507

    Article  Google Scholar 

  • Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 23:510–519

    Article  Google Scholar 

  • Smestad G, Bignozzi C, Argazzi R (1994) Testing of dye sensitized TiO2 solar cells I: experimental photocurrent output and conversion efficiencies. Sol Energy Mater Sol Cells 32:259–272

    Article  CAS  Google Scholar 

  • Strumpel C, McCann M, Beaucarne G, Arkhipov V, Slaoui A, Sˇvrcˇek V, Can˜izo CD, Tobias I (2007) Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials. Sol Energy Mat Sol Cells 91:238–249

    Article  Google Scholar 

  • Trupke T, Green MA, Würfel P (2002a) Improving solar cell efficiencies by down-conversion of high-energy photons. J Appl Phys 92:1668–1674

    Article  CAS  Google Scholar 

  • Trupke T, Green MA, Würfel P (2002b) Improving solar cell efficiencies by up-conversion of sub band gap light. J Appl Phys 92:4117–4122

    Article  CAS  Google Scholar 

  • Trupke T, Shalav A, Richards BS, Würfel P, Green MA (2006) Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Sol Energy Mater Sol Cells 90:3327–3338

    Article  CAS  Google Scholar 

  • Underwood DF, Kippeny T, Rosenthal SJ (2001) Ultrafast carrier dynamics in CdSe nanocrystals determined by femto second fluorescence upconversion spectroscopy. J Phys Chem B 105:436–443

    Article  CAS  Google Scholar 

  • Van de Rijke F, Zijlmans H, Li S, Vail T, Raap AK, Niedbala RS, Tanke H (2001) Up-converting phosphor reporters for nucleic acid microarrays. J Nat Biotechnol 19:273–276

    Article  Google Scholar 

  • Wang LY, Li YD (2006) Green upconversion nanocrystals for DNA detection. Chem Commun 2557–2559

  • Wang F, Liu XG (2008) Upconversion multicolor rine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanocrystals. J Am Chem Soc 130:5642–5643

    Article  CAS  Google Scholar 

  • Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989

    Article  CAS  Google Scholar 

  • Wang HQ, Nann T (2009) Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano 3:3804–3808

    Article  CAS  Google Scholar 

  • Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature (Lond) 463:1061–1065

    Article  CAS  Google Scholar 

  • Wu SW, Han G, Milliron DJ, Aloni S, Altoe V, Talapin DV, Cohen BE, Schuck PJ (2009) Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci USA 106:10917–10921

    Article  CAS  Google Scholar 

  • Xiong LQ, Chen ZG, Yu MX, Li FY C, Liu C, Huang CH (2009) Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth upconverting nanophosphors. Biomaterials 30:5592–5600

    Article  CAS  Google Scholar 

  • Yi GS, Chow GM (2006) Nanocrystals with efficient up-conversion fluorescence. Adv Funct Mater 16:2324–2329

    Article  CAS  Google Scholar 

  • Yi GS, Chow GM (2007) Water-soluble NaYF4: Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 19:341–343

    Article  CAS  Google Scholar 

  • Yi GS, Lu HC, Zhao SY, Yue G, Yang WJ, Chen DP, Guo LH (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett 4:2191–2196

    Article  CAS  Google Scholar 

  • Zhang P, Steelant P, Kumar M, Scholfield M (2007) Versatile photodynamic therapy at infrared excitation. J Am Chem Soc 129:4526–4527

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors (A.F.K., R.Y.) gratefully acknowledge the support from the Council of Scientific and Industrial Research (CSIR), New Delhi for research fellowship. Authors are thankful to Mr. Sunil K. Sharma and Mr. Amarjeet Singh from RRCAT, Indore, Dr. R. K. Kotnala, Ms. Prachi Joshi, Ms. Chetna Dhand, and Dr. A.K.Srivastava from NPL, New Delhi for their help during the course of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santa Chawla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A.F., Yadav, R., Mukhopadhya, P.K. et al. Core–shell nanophosphor with enhanced NIR–visible upconversion as spectrum modifier for enhancement of solar cell efficiency. J Nanopart Res 13, 6837–6846 (2011). https://doi.org/10.1007/s11051-011-0591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0591-9

Keywords

Navigation