Skip to main content
Log in

Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A two-step method has been used to fabricate nano-particles of layer-structured bismuth chalcogenide compounds, including Bi2Te3, Bi2Se3, and Bi2Se0.3Te2.7, through a nano-scaled top-down route. In the first step, lithium (Li) atoms are intercalated between the van der Waals bonded quintuple layers of bismuth chalcogenide compounds by controllable electrochemical process inside self-designed lithium ion batteries. And in the second step, the Li intercalated bismuth chalcogenides are subsequently exposed to ethanol, in which process the intercalated Li atoms would explode like atom-scaled bombs to exfoliate original microscaled powder into nano-scaled particles with size around 10 nm. The influence of lithium intercalation speed and amount to three types of bismuth chalcogenide compounds are compared and the optimized intercalation conditions are explored. As to maintain the phase purity of the final nano-particle product, the intercalation lithium amount should be well controlled in Se contained bismuth chalcogenide compounds. Besides, compared with binary bismuth chalcogenide compound, lower lithium intercalation speed should be applied in ternary bismuth chalcogenide compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bludská J, Karamzov S, Navrátil J, Horák J (2004) Copper intercalation into Bi2Te3 single crystals. Solid State Ionics 171:251–259

    Article  Google Scholar 

  • Chen JK, Sun ZL, Zhu YJ, Chen NF, Zhou YF, Ding J, Chen XH, Chen LD (2011) Top-down fabrication of nano-scaled Bi2Se0.3Te2.7 associated by electrochemical Li intercalation. Dalton Trans 40:340–343

    Article  CAS  Google Scholar 

  • Ding ZF, Viculis L, Nakawatase J, Kaner RB (2001) Intercalation and solution processing of bismuth telluride and bismuth selenide. Adv Mater 13:797–800

    Article  CAS  Google Scholar 

  • Ding ZF, Bux SK, King DJ, Chang FL, Chen TH, Huang SC, Kaner RB (2009) Lithium intercalation and exfoliation of layered bismuth selenide and bismuth telluride. J Mater Chem 19:2588–2592

    Article  CAS  Google Scholar 

  • Dong GH, Zhu YJ, Chen LD (2009) Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering. J Mater Chem 20:1976–1981

    Article  Google Scholar 

  • Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053

    Article  CAS  Google Scholar 

  • Harman TC, Taylor PJ, Walsh MP, La Forge BE (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297:2229–2232

    Article  CAS  Google Scholar 

  • Hochbaum AL, Chen RK, Delgado RD, Liang WJ, Garnett EC, Najarian M, Majumdar A, Yang PD (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–167

    Article  CAS  Google Scholar 

  • Hor YS, Williams AJ, Checklsky JG, Roushan P, Seo J, Xu Q, Zandbergen HW, Yazdani A, Ong NP, Cava RJ (2010) Superconductivity in Cu x Bi2Se3 and its implications for pairing in the undoped topological insulator. Phys Rev Lett 104:057001

    Article  CAS  Google Scholar 

  • Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303:818–821

    Article  CAS  Google Scholar 

  • Lan YC, Poudel B, Ma Y, Wang D, Dresselhaus MS, Chen G, Ren ZF (2009) Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Lett 9:1419–1422

    Article  CAS  Google Scholar 

  • Lee J, Farhangfar S, Lee J, Cagnon L, Scholz R, Gösele U, Nielsch K (2008) Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition. Nanotechnology 19:365701

    Article  Google Scholar 

  • Liang W, Rabin O, Hochbaum A, Fardy M, Zhang M, Yang PD (2009) Thermoelectric properties of p-type PbSe nanowires. Nano Res 2:394–399

    Article  CAS  Google Scholar 

  • Miao L, Tanemura S, Huang R, Liu CY, Huang CM, Xu G (2010) Large seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion. ACS Appl Mater Interfaces 2:2355–2359

    Article  CAS  Google Scholar 

  • Patzke GR, Krumeich F, Nesper R (2002) Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology. Angew Chem Int Ed 41:2446–2461

    Article  CAS  Google Scholar 

  • Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638

    Article  CAS  Google Scholar 

  • Scheele M, Oeschler N, Meier K, Kornowski A, Klinke C, Weller H (2009) Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv Funct Mater 19:3476–3483

    Article  CAS  Google Scholar 

  • Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310:86–89

    Article  CAS  Google Scholar 

  • Tavkhelidze A (2009) Large enhancement of the thermoelectric figure of merit in a ridged quantum well. Nanotechnology 20:405401

    Article  Google Scholar 

  • Teweldebrhan D, Goyal V, Rahman M, Balandin A (2010) Atomically-thin crystalline films and rebbons of bismuth telluride. Appl Phys Lett 96:053107

    Article  Google Scholar 

  • Tjong SC, Chen H (2004) Nanocrystalline materials and coatings. Materials Science & Engineering R-Reports 45:1–88

    Article  Google Scholar 

  • Xiao QF, Weng D, Yang ZL, Garay J, Zhang M, Lu Y (2010) Efficient synthesis of PbTe nanoparticle networks. Nano Res 3:685–693

    Article  CAS  Google Scholar 

  • Xie WJ, Tang XF, Yan YG, Zhang QJ, Tritt TM (2009) Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl Phys Lett 94:102111

    Article  Google Scholar 

  • Yu C, Kim YS, Kim D, Grunlan JC (2008) Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 8:4428–4432

    Article  CAS  Google Scholar 

  • Zhang GQ, Yu QX, Yao Z, Li XG (2009) Large scale highly crystalline Bi2Te3 nanotubes through solution phase nanoscale Kirkendall effect fabrication. Chem Commun 2317

  • Zhao XB, Ji XH, Zhang YH, Zhu TJ, Tu JP, Zhang XB (2005) Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl Phys Lett 86:062111

    Article  Google Scholar 

Download references

Acknowledgment

Financial supports from Program of Shanghai Subject Chief Scientist (No. 09XD1404400), and National Basic Research Program of China (973 Program) (No.2007CB607500) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Zhu, Y., Chen, N. et al. Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation. J Nanopart Res 13, 6569–6578 (2011). https://doi.org/10.1007/s11051-011-0563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0563-0

Keywords

Navigation