Skip to main content
Log in

In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

  • Brief communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, in situ control growth of bismuth nanoparticles (Bi0 NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2–8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4–9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 °C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Balan L, Schneider R, Billaud D, Fort Y, Ghanbaja J (2004) A new synthesis of ultrafine nanometre-sized bismuth particles. Nanotechnology 15:940–944

    Article  CAS  Google Scholar 

  • Berini P (2009) Long-range surface plasmon polaritons. Adv Opt Photonics 1:484–588

    Article  CAS  Google Scholar 

  • Brundle CR, Evans CA Jr, Wihon S (1992) Encyclopedia of materials characterization. Butterworth-Heinemann, Boston

    Google Scholar 

  • Carotenuto G, Hison CL, Capezzuto F, Palomba M, Perlo P, Conte P (2009) Synthesis and thermoelectric characterisation of bismuth Nanoparticles. J Nanopart Res 11:1729–1738

    Article  CAS  Google Scholar 

  • Chen Y, Jaakola J, Ge Y, Säynätjoki A, Tervonen A, Hannula SP, Honkanen S (2009) In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process. J Non-Cryst Solids 355:2224–2227

    Article  CAS  Google Scholar 

  • Derrouiche S, Loebick CZ, Pfefferle L (2010) Optimization of routes for the synthesis of bismuth nanotubes: implications for nanostructure form and selectivity. J Phys Chem C 114:3431–3440

    Article  CAS  Google Scholar 

  • Ebendorff-Heidepriem H, Petropoulos P, Asimakis S, Finazzi V, Moore RC, Frampton K, Koizumi F, Richardson DJ, Monro TM (2004) Bismuth glass holey fibers with high nonlinearity. Opt Express 12:5082–5087

    Article  CAS  Google Scholar 

  • Gao Y, Niu H, Zeng C, Chen Q (2003) Preparation and characterization of single-crystalline bismuth nanowires by a low-temperature solvothermal process. Chem Phys Lett 367:141–144

    Article  CAS  Google Scholar 

  • Gekhtman D, Zhang ZB, Adderton D, Dresselhaus MS, Dresselhaus G (1999) Electrostatic force spectroscopy and imaging of Bi wires: spatially resolved quantum confinement. Phys Rev Lett 82:3887–3890

    Article  CAS  Google Scholar 

  • Grass RN, Stark WJ (2006) Flame spray synthesis under a non-oxidizing atmosphere: preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal. J Nanopart Res 8:729–736

    Article  CAS  Google Scholar 

  • Grzelczak M, Pe’rez-Juste J, Mulvaney P, Liz-Marza’n LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791

    Article  CAS  Google Scholar 

  • Hodak JH, Henglein A, Giersig M, Hartland GV (2000) Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J Phys Chem B 104:11708–11718

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17:6782–6786

    Article  CAS  Google Scholar 

  • Kim J-U, Cha S-H, Shin K, Jho JY, Lee J-C (2005) Synthesis of gold nanoparticles from gold(I)-alkanethiolate complexes with supramolecular structures through electron beam irradiation in TEM. J Am Chem Soc 127:9962–9963

    Article  CAS  Google Scholar 

  • Kim SH, Choi Y-S, Kang K, Yang SI (2007) Controlled growth of bismuth nanoparticles by shiv beam irradiation in TEM. J Alloy Compd 427:330–332

    Article  CAS  Google Scholar 

  • Latham AH, Williams ME (2008) Transmission electron microscope-induced structural evolution in amorphous Fe, Co, and Ni oxide nanoparticles. Langmuir 24:14195–14202

    Article  CAS  Google Scholar 

  • Mamidala V, Xing G, Ji W (2010) Surface plasmon enhanced third-order nonlinear optical effects in Ag–Fe3O4. J Phys Chem C 114:22466–22471

    Article  CAS  Google Scholar 

  • Meldrum A, Boatner LA, White CW, Ewing RC (2000) Ion irradiation effects in nonmetals: formation of nanocrystals and novel microstructures. Mat Res Innovat 3:190–204

    Article  CAS  Google Scholar 

  • Mellor JW (1947) Comprehensive treatise on inorganic and theoretical chemistry. Vol. IX. Longmans, London

    Google Scholar 

  • Oshima Y, Takayanagi K, Hirayama H (1997) Structural anomaly of fine bismuth particles observed by ultra high-vacuum TEM. Z Phys D 40:534–538

    Article  CAS  Google Scholar 

  • Pease RF, Chou SY (2008) Lithography and other patterning techniques for future electronics. Proc IEEE 96:248–270

    Article  CAS  Google Scholar 

  • Peng M, Wondraczek L (2009) Bismuth-doped oxide glasses as potential solar spectral converters and concentrators. J Mater Chem 19:627–630

    Article  CAS  Google Scholar 

  • Ren J, Dong G, Xu S, Bao R, Qiu J (2008) Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped Glass. J Phys Chem A 112:3036–3039

    Article  CAS  Google Scholar 

  • Reyes-Esqueda JA, Rodríguez-Iglesias V, Silva-Pereyra HG, Torres–Torres C, Santiago-Ramírez AL, Cheang-Wong JC, Crespo-Sosa A, Rodríguez-Fernández L, López-Suárez A, Oliver A (2009) Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites. Opt Express 17:12849–12868

    Article  CAS  Google Scholar 

  • Sanz O, Haro-Poniatowski E, Gonzalo J, Navarro JMF (2006) Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. J Non-Cryst Solids 352:761–768

    Article  CAS  Google Scholar 

  • Sepulveda-Guzman S, Elizondo-Villarreal N, Ferrer D, Torres-Castro A, Gao X, Zhou JP, Jose-Yacaman M (2007) In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology 18(1–6):335604

    Article  Google Scholar 

  • Smolorz S, Kang I, Wise F, Aitken BG, Borrelli NF (1999) Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses. J Non-Cryst Solids 256&257:310–317

    Article  CAS  Google Scholar 

  • Sugimoto N, Kanbara H, Fujiwara S, Tanaka K, Hirao K (1996) Ultrafast response of third-order optical nonlinearity in glasses containing Bi2O3. Opt Lett 21:1637–1639

    Article  CAS  Google Scholar 

  • Vanýsek P (1994) Electrochemical series. In: Lide DR (ed) CRC Hand book of chemistry and physics. CRC Press, London

    Google Scholar 

  • Wang YW, Hong BH, Kim KS (2005) Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra. J Phys Chem B 109:7067–7072

    Article  CAS  Google Scholar 

  • Wang F, Tang R, Yu H, Gibbons PC, Buhro WE (2008) Size- and shape-controlled synthesis of bismuth nanoparticles. Chem Mater 20:3656–3662

    Article  CAS  Google Scholar 

  • Wang D, Ma X, Wang Y, Wang L, Wang Z, Zheng W, He X, Li J, Peng Q, Li Y (2010) Shape control of CoO and LiCoO2 nanocrystals. Nano Res 3:1–7

    Article  Google Scholar 

  • Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314

    Article  CAS  Google Scholar 

  • Zhang ZB, Gekhman D, Dresselhaus MS, Ying JY (1999) Processing and characterization of single-crystalline ultrafine bismuth nanowires. Chem Mater 11:1659–1665

    Article  CAS  Google Scholar 

  • Zhang Y, Yang Y, Zheng J, Hua W, Chen G (2008) Effects of oxidizing additives on optical properties of Bi2O3–B2O3–SiO2 glasses. J Am Ceram Soc 91:3410–3412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SPS express his sincere gratitude for the financial support of the Council of Scientific and Industrial Research (CSIR), New Delhi in the form of CSIR-SRF under sanction number 31/15(78)/2010-EMR-I. The authors thank Director of the institute for his kind permission to publish this article. They also thankfully acknowledge the Electron Microscope Division of this institute for recording the TEM, HRTEM, and SAED images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basudeb Karmakar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S.P., Karmakar, B. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature. J Nanopart Res 13, 3599–3606 (2011). https://doi.org/10.1007/s11051-011-0468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0468-y

Keywords

Navigation