Skip to main content
Log in

Nanostructured ZnO synthesis and its application for effective disinfection of Escherichia coli micro organism in water

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanostructured ZnO photo catalyst was synthesized by precipitation method and was applied in conjunction with 355 nm pulsed laser irradiation for effective disinfection of the water contaminated with Escherichia coli micro organism. The morphological studies using X-Ray Diffractometer (XRD) and Transmission Electron Microscope (TEM) were carried out on the synthesized nano-ZnO, and these studies indicated that the catalyst has the crystallographic structure of hexagonal wurtzite and has the grain size of around 20–40 nm. The bacteria decay rate constants were estimated for nine different concentrations of nano-ZnO in infected water. The parametric optimization was carried out, and we could reach the decay rate constant as high as 0.24 min −1, which is higher than micro-structured ZnO and the familiar TiO2 photo catalysts under similar experimental condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arslan I, Balcioglu IA, Bahnemann DW (2000) Heterogeneous photo-catalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts. Appl Catal B 26:193–206

    Article  CAS  Google Scholar 

  • Bodalo-Santoyo A, Gomez-Carrasco JL, Gomez-Gomez E, Maxumo-Martin F, FHidalgo-Montesinos AM (2003) Application of reverse osmosis to reduce pollutants present in industrial wastewater. Desalination 155:101–108

    Article  CAS  Google Scholar 

  • Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A (1992) Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 52:2346–2348

    CAS  Google Scholar 

  • Chen GH (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41

    Article  Google Scholar 

  • Dindar B, Icli S (2001) Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J Photochem Photobiol A Chem 140:263–268

    Article  CAS  Google Scholar 

  • Dunlop PSM, Byrne JA, Manga N, Eggins BR (2002) The photocatalytic removal of bacterial pollutants from drinking water. J Photochem Photobiol A 148:355–363

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Gondal MA, Hameed A, Yamani ZH, Arfaj A (2004) Photocatalytic transformation of methane into methanol under UV laser irradiation over WO3, TiO2 and NiO catalysts. Chem Phys Lett 392:372–377

    Article  CAS  Google Scholar 

  • Gondal MA, Dastageer MA, Khalil A (2009) Synthesis of nano-WO3 and its catalytic activity for enhanced antimicrobial process for water purification using laser induced photo-catalysis. Catal Commun 11:214–219

    Article  CAS  Google Scholar 

  • Gondal MA, Bagabas AA, Dastageer MA, Khalil A (2010) Synthesis, characterization, and antimicrobial application of nano-palladium-doped nano-WO3. J Mol Catal A Chem 323:78–83

    Article  CAS  Google Scholar 

  • Gouvea CAK, Wypych F, Morsea SG, Duran N, Nagata N, Peralta-Zamora P (2000) Semiconductor-assisted photocatalytic degradation of reactive dyes n aqueous solution of reactive dyes in aqueous solution. Chemosphere 40:433–440

    Article  CAS  Google Scholar 

  • Hameed A, Gondal MA (2005) Production of hydrogen-rich syngas using p-type NiO catalyst: a laser-based photocatalytic approach. J Mol Catal A Chem 233:35–41

    Article  CAS  Google Scholar 

  • Harnandez-Sierra JFF, Ruiz DC, Cruz Pena F, Matinez-Gutierrez AE, Martinez AJP, Guillen H, Tapia-Perez GM (2008) The antimicrobial sensitivity of Streptococcus mutants to nanoparticles of silver, zinc oxide and gold. Nanomed Nanotechnol Biol Med 4:237–240

    Article  Google Scholar 

  • Heller A (1993) Photocatalytic purification and treatment of water and air. Elsevier, Amsterdam, p 747

    Google Scholar 

  • Kwon CH, Shin H, Kim JH, Choi WS, Yoon KH (2004) Degradation of methylene blue via photocatalysis of titanium dioxide. Mater Chem Phys 86:78–82

    Article  CAS  Google Scholar 

  • Leung TY, Chan CY, Hu C, Yu JC, Wong PK (2008) Disinfection of marine bacteria using fluorescent light. Water Res 42(19):4827–4837

    Article  CAS  Google Scholar 

  • Lu W, Liu G, Gao S, Xing S, Wang J (2008) Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology 19:445711

    Article  Google Scholar 

  • Luo H, Takata T, Lee Y, Zhao J, Domen K, Yan Y (2004) Photocatalytic activity enhancing of titanium dioxide by co-doping with bromine and chlorine. Chem Mater 16:846–849

    Article  CAS  Google Scholar 

  • Mahato TH, Prasad GK, Singh B, Acharya J, Srivastava AR, Vijayaraghavan R (2009) Nanocrystalline zinc oxide for the decontamination of sarin. J Hazard Mater 165:928–932

    Article  CAS  Google Scholar 

  • Matsunga T, Tomoda R, Nakajima T, Nakajima T, Komine T (1988) Continuous sterilization system that uses semiconductor powder. Appl Environ Microbiol 54:1330–1333

    Google Scholar 

  • Palmisano G, Addamo M, Augugliaro V, Caronna T, Di Paola E, Garcia Lopez V, Loddo G, Marcì L, Palmisano M, Schiavello M (2007) Selectivity of a hydroxyl radical in the compounds in heterogeneous photocatalysis. Catal Today 122:118–127

    Article  CAS  Google Scholar 

  • Pelizzetti E, Minero C (1999) Role of oxidative and reductive pathways in the photocatalytic degradation of organic compounds. Colloids Surf A 151:321–327

    Article  CAS  Google Scholar 

  • Peng F, Ren YQ (2003) Preparation of non-TiO2-SnO2 composite film and its photocatalytic activity for toluene degradation. Chin J Catal 24:243–247

    CAS  Google Scholar 

  • Qunitana M, Ricra E, Rodriguez J, Estrada W (2002) Spray pyrolysis deposited zinc oxide film for photo-electrocatalytic degradation of methyl orange: influence of the Ph. Catal Today 76:141–148

    Article  Google Scholar 

  • Rajkumar D, Palanivelu K (2004) Electrochemical treatment of industrial wastewater. J Hazard Mater 113:123–129

    Article  CAS  Google Scholar 

  • Rincón AG, Pulgarin C, Adler N, Peringer P (2001) Interaction between E. coli inactivation and DBP-precursors dihydroxybenzene isomers in the photocatalytic process of drinking-water disinfection with TiO2. J Photochem Photobiol A 139:233–241

    Article  Google Scholar 

  • Sakthivel S, Kisch H (2003) Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. Chem Phys Chem 4:487–490

    CAS  Google Scholar 

  • Sakthivel S, Nepolian B, Shankar MV, Palanichamy M, Arabindoo B, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82

    Article  CAS  Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide. J Microbiol Methods 54:177–182

    Article  CAS  Google Scholar 

  • Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86:521–522

    Google Scholar 

  • Švrček V, Sasaki T, Shimizu Y, Koshizaki N (2006) Blue luminescent silicon nanocrystals prepared by ns pulsed laser ablation in water. Appl Phys Lett 89:213113

    Article  Google Scholar 

  • Thampi KR, Kiwi J, Grazel M (1987) Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 327:506–508

    Article  CAS  Google Scholar 

  • Wang Y, Li X, Lu G, Chen G, Chen Y (2008) Synthesis and photo-catalytic degradation with different morphology. Mater Lett 62:2359–2363

    Article  CAS  Google Scholar 

  • Wolkin MV, Jorne JP, Fauchet M, Allan G, Delerue C (1999) Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys Rev Lett 82:197–200

    Article  CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nano-particles (ZnO nanofluids). J Nanopart Res 9:479–489

    Article  Google Scholar 

Download references

Acknowledgments

The support by KACST through project number 28-40 and KFUPM is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gondal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gondal, M.A., Dastageer, M.A., Khalil, A. et al. Nanostructured ZnO synthesis and its application for effective disinfection of Escherichia coli micro organism in water. J Nanopart Res 13, 3423–3430 (2011). https://doi.org/10.1007/s11051-011-0264-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0264-8

Keywords

Navigation