Abstract
Here, we present a review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms. For purpose of this review, silver nanomaterials include silver nanoparticles, stabilized silver salts, silver–dendrimer, polymer and metal oxide composites, and silver-impregnated zeolite and activated carbon materials. While there is some evidence that silver nanoparticles can directly damage bacteria cell membranes, silver nanomaterials appear to exert bacteriocidal activity predominantly through release of silver ions followed (individually or in combination) by increased membrane permeability, loss of the proton motive force, inducing de-energization of the cells and efflux of phosphate, leakage of cellular content, and disruption DNA replication. Eukaryotic cells could be similarly impacted by most of these mechanisms and, indeed, a small but growing body of literature supports this concern. Most antimicrobial studies are performed in simple aquatic media or cell culture media without proper characterization of silver nanomaterial stability (aggregation, dissolution, and re-precipitation). Silver nanoparticle stability is governed by particle size, shape, and capping agents as well as solution pH, ionic strength, specific ions and ligands, and organic macromolecules—all of which influence silver nanoparticle stability and bioavailability. Although none of the studies reviewed definitively proved any immediate impacts to human health or the environment by a silver nanomaterial containing product, the entirety of the science reviewed suggests some caution and further research are warranted given the already widespread and rapidly growing use of silver nanomaterials.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abid J, Wark A, Brevet P, Girault H (2002) Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun 792–793. doi: 10.1039/b200272h
Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–269. doi:10.1016/j.taap.2009.10.016
Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318. doi:10.1002/cbic.200700592
Amro N, Kotra L, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G (2000) High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16:2789–2796. doi:10.1021/la991013x
Arora S, Jain J, Rajwade J, Paknikar K (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100. doi:10.1016/j.toxlet.2008.04.009
Arora S, Jain J, Rajwade JM, Paknikar KM (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236:310–318. doi:10.1016/j.taap.2009.02.020
Asharani P, Wu Y, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:1–8. doi:10.1088/0957-4484/19/25/255102
Asharani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290. doi:10.1021/nn800596w
Auerbach SM (2003) Zeolite science and technology. Marcel Dekker, New York
Bajpai S, Mohan Y, Bajpai M, Tankhiwale R, Thomas V (2007) Synthesis of polymer stabilized silver and gold nanostructures. J Nanosci Nanotechnol 7:2994–3010. doi:10.1166/jnn.2007.911
Balogh L, Swanson D, Tomalia D, Hagnauer G, McManus A (2001) Dendrimer–silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1:18–21. doi:10.1021/nl005502p
Batabyal S, Basu C, Das A, Sanyal G (2007) Green chemical synthesis of silver nanowires and microfibers using starch. J Biobased Mater Bioenergy 1:143–147. doi:10.1166/jbmb.2007.016
Benn T, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139. doi:10.1021/es7032718
Braydich-Stolle L, Hussain S, Schlager J, Hofmann M (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419. doi:10.1093/toxsci/kfi256
Brown C, Parchaso F, Thompson J, Luoma S (2003) Assessing toxicant effects in a complex estuary: a case study of effects of silver on reproduction in the bivalve, Potamocorbula amurensis, in San Francisco Bay. Hum Ecol Risk Assess 9:95–119. doi:10.1080/713609854
Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619. doi:10.1021/jp712087m
Chen C, Chiang C (2008) Preparation of cotton fibers with antibacterial silver nanoparticles. Mater Lett 62:3607–3609. doi:10.1016/j.matlet.2008.04.008
Chen X, Schluesener H (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12. doi:10.1016/j.toxlet.2007.10.004
Chi Z, Liu R, Zhao L, Qin P, Pan X, Sun F, Hao X (2009) A new strategy to probe the genotoxicity of silver nanoparticles combined with cetylpyridine bromide. Spectrochim Acta A 72:577–581. doi:10.1016/j.saa.2008.10.044
Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588. doi:10.1021/es703238h
Choi O, Deng K, Kim N, Ross L, Surampalli R, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074. doi:10.1016/j.watres.2008.02.021
Choi O, Cleuenger T, Deng B, Surampalli R, Ross L, Hu Z (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43:1879–1886. doi:10.1016/j.watres.2009.01.029
Cowan M, Abshire K, Houk S, Evans S (2003) Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J Ind Microbiol Biotechnol 30:102–106. doi:10.1007/s10295-002-0022-0
Damm C, Munstedt H (2008) Kinetic aspects of the silver ion release from antimicrobial polyamide/silver nanocomposites. Appl Phys A 91:479–486. doi:10.1007/s00339-008-4434-1
Damm C, Munstedt H, Rosch A (2008) The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater Chem Phys 108:61–66. doi:10.1016/j.matchemphys.2007.09.002
Dibrov P, Dzioba J, Gosink K, Hase C (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670. doi:10.1128/AAC.46.8.2668-2670.2002
Dorjnamjin D, Ariunaa M, Shim Y (2008) Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity. Int J Mol Sci 9:807–819. doi:10.3390/ijms9050807
Eby D, Schaeublin N, Farrington K, Hussain S, Johnson G (2009) Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS Nano 3:984–994. doi:10.1021/nn900079e
Elechiguerra J, Burt J, Morones J, Camacho-Bragado A, Gao X, Lara H, Yacaman M (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6. doi:10.1186/1477-3155-3-6
Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A, Lo Nostro P, Canton P, Baglioni P (2008) Clusters of poly(acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem C 112:11758–11766. doi:10.1021/jp8035814
Feng Q, Wu J, Chen G, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668
Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024. doi:10.1093/Jac/Dkh478
Galiano K, Pleifer C, Engelhardt K, Brossner G, Lackner P, Huck C, Lass-Florl C, Obwegeser A (2008) Silver segregation and bacterial growth of intraventricular catheters impregnated with silver nanoparticles in cerebrospinal fluid drainages. Neurol Res 30:285–287. doi:10.1179/016164107x229902
Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JCJ (2009) Dispersion and toxicity of selected manufactured nanomaterials in Natural River water samples: effects of water chemical composition. Environ Sci Technol 43:3322–3328. doi:10.1021/es803315v
Gong P, Li HM, He XX, Wang KM, Hu JB, Tan WH, Zhang SC, Yang XH (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18. doi: 10.1088/0957-4484/18/28/285604
Gulrajani M, Gupta D, Periyasamy S, Muthu S (2008) Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties. J Appl Polym Sci 108:614–623. doi:10.1002/app.27584
Gupta A, Silver S (1998) Molecular genetics—silver as a biocide: Will resistance become a problem? Nat Biotechnol 16: 888. doi: 10.1038/nbt1098-888
Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64:5042–5045
Gupta A, Matsui K, Lo JF, Silver S (1999) Molecular basis for resistance to silver cations in Salmonella. Nat Med 5:183–188. doi:10.1038/5545
Gupta A, Phung LT, Taylor DE, Silver S (2001) Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 147:3393–3402
Ha H, Xu W, An J, Li D, Zhao B (2006) A simple method to synthesize triangular silver nanoparticles by light irradiation. Spectrochim Acta A 64:956–960. doi:10.1016/j.saa.2005.09.004
Hernandez-Sierra J, Ruiz F, Pena D, Martinez-Gutierrez F, Martinez A, Guillen A, Tapia-Perez H, Castanon G (2008) The antimicrobial sensitivity of Streptococcus mutants to nanoparticles of silver, zinc oxide, and gold. Nanomed Nanotechnol 4:237–240. doi:10.1016/j.nano.2008.04.005
Hlidek P, Biederman H, Choukourov A, Slavinska D (2008) Behavior of polymeric matrices containing silver inclusions. 1—Review of adsorption and oxidation of hydrocarbons on silver surfaces/interfaces as witnessed by FT-IR spectroscopy. Plasma Process Polym 5:807–824. doi:10.1002/ppap.200800083
Holt K, Bard A (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag. Biochemistry 44:13214–13223. doi:10.1021/bi0508542
Hsin Y, Chena C, Huang S, Shih T, Lai P, Chueh P (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139. doi:10.1016/j.toxlet.2008.04.015
Huang H, Yang X (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339:2627–2631. doi:10.1016/j.carres.2004.08.005
Hussain S, Hess K, Gearhart J, Geiss K, Schlager J (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983. doi:10.1016/j.tiv.2005.06.034
Hwang E, Lee J, Chae Y, Kim Y, Kim B, Sang B, Gu M (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750. doi:10.1002/smll.200700954
Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144. doi:10.2174/157341308784340804
Inoue Y, Hoshino M, Takahashi H, Noguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M (2002) Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. J Inorg Biochem 92:37–42. doi:10.1016/S0162-0134(02)00489-0
Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63. doi:10.1002/bit.20368
Jin W, Jeon H, Kim J, Youk J (2007) A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles. Synthetic Met 157:454–459. doi:10.1016/j.synthmet.2007.05.011
Jung W, Koo H, Kim K, Shin S, Kim S, Park Y (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178. doi:10.1128/AEM.02001-07
Jung R, Kim Y, Kim H, Jin H (2009) Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. J Biomater Sci Polym Ed 20:311–324. doi:10.1163/156856209X412182
Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413. doi:10.1016/j.matlet.2008.06.051
Kasthuri J, Veerapandian S, Rajendiran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B 68:55–60. doi:10.1016/j.colsurfb.2008.09.021
Kim J (2007) Antibacterial activity of Ag+ ion-containing silver nanoparticles prepared using the alcohol reduction method. J Ind Eng Chem 13:718–722
Kim J, Kuk E, Yu K, Kim J, Park S, Lee H, Kim S, Park Y, Park Y, Hwang C, Kim Y, Lee Y, Jeong D, Cho M (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol 3:95–101. doi:10.1016/j.nano.2006.12.001
Kim K, Sung W, Moon S, Choi J, Kim J, Lee D (2008a) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484
Kim Y, Kim J, Cho H, Rha D, Kim J, Park J, Choi B, Lim R, Chang H, Chung Y, Kwon I, Jeong J, Han B, Yu I (2008b) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20:575–583. doi:10.1080/08958370701874663
Kim J, Lee J, Kwon S, Jeong S (2009a) Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. J Nanosci Nanotechnol 9:1098–1102. doi:10.1166/jnn.2009.C096
Kim K, Sung W, Suh B, Moon S, Choi J, Kim J, Lee D (2009b) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242. doi:10.1007/s10534-008-9159-2
Kutschera U (2009) Symbiogenesis, natural selection, and the dynamic Earth. Theory Biosci 128:191–203. doi:10.1007/s12064-009-0065-0
Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834. doi:10.1021/jp711616v
Le Pape H, Solano-Serena F, Contini P, Devillers C, Maftah A, Leprat P (2002) Evaluation of the anti-microbial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon 40:2954. doi:10.1016/S0008-6223(02)00246-4
Le Pape H, Solano-Serena F, Contini P, Devillers C, Maftah A, Leprat P (2004) Involvement of reactive oxygen species in the bactericidal activity of activated carbon fibre supporting silver bactericidal activity of ACF(Ag) mediated by ROS. J Inorg Biochem 98:1054–1060. doi:10.1016/j.jinorgbio.2004.02.025
Lesniak W, Bielinska A, Sun K, Janczak K, Shi X, Baker J, Balogh L (2005) Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett 5:2123–2130. doi:10.1021/nl051077u
Li Y, Kim Y, Lee E, Cai W, Cho S (2006) Synthesis of silver nanoparticles by electron irradiation of silver acetate. Nucl Instrum Methods B 251:425–428. doi:10.1016/j.nimb.2006.06.019
Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858. doi:10.1039/b615357g
Liau S, Read D, Pugh W, Furr J, Russell A (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283. doi:10.1046/j.1472-765X.1997.00219.x
Lind ML, Jeong BH, Subramani A, Huang XF, Hoek EMV (2009) Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes. J Mater Res 24:1624–1631. doi:10.1557/Jmr.2009.0189
Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam P, Chiu J, Che C (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. doi:10.1021/pr0504079
Lok C, Ho C, Chen R, He Q, Yu W, Sun H, Tam P, Chiu J, Che C (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534. doi:10.1007/s00775-007-0208-z
Long D, Wu G, Chen S (2007) Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation. Radiat Phys chem 76:1126–1131. doi:10.1016/j.radphyschem.2006.11.001
Lu L, Sun R, Chen R, Hui C, Ho C, Luk J, Lau G, Che C (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262
Mahapatra S, Bogle K, Dhole S, Bhoraskar V (2007) Synthesis of gold and silver nanoparticles by electron irradiation at 5–15 keV energy. Nanotechnology 18. doi: 10.1088/0957-4484/18/13/135602
Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51. doi:10.1016/j.carbpol.2007.07.025
Manno D, Filippo E, Di Giulio M, Serra A (2008) Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications. J Non-Cryst Solids 354:5515–5520. doi:10.1016/j.jnoncrysol.2008.04.059
Manzi AE, van Halbeek H (1999) Saccharide structure and nomenclature. In: Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (eds) Essentials of glycobiology, 1st edn. Cold Spring Harbor Laboratory Press, New York
Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348. doi:10.1007/s11051-008-9428-6
Martinez-Castanon G, Nino-Martinez N, Loyola-Rodriguez J, Patino-Marin N, Martinez-Mendoza J, Ruiz F (2009) Synthesis of silver particles with different sizes and morphologies. Mater Lett 63:1266–1268. doi:10.1016/j.matlet.2009.02.061
Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8:71–75. doi:10.1016/j.stam.2006.10.005
McDonnell AMP, Beving D, Wang AJ, Chen W, Yan YS (2005) Hydrophilic and antimicrobial zeolite coatings for gravity-independent water separation. Adv Funct Mater 15:336–340. doi:10.1002/adfm.200400183
Mendis E, Rajapakse N, Byun H, Kim S (2005) Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci 77:2166–2178. doi:10.1016/j.lfs.2005.03.016
Mokhtari N, Daneshpajouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi H, Shahverdi A (2009) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421. doi:10.1016/j.materresbull.2008.11.021
Morones J, Elechiguerra J, Camacho A, Holt K, Kouri J, Ramirez J, Yacaman M (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. doi:10.1088/0957-4484/16/10/059
Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S, Khan M, Parishcha R, Ajaykumar P, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519. doi:10.1021/nl0155274
Naidu B, Park J, Kim S, Park S, Lee E, Yoon K, Lee S, Lee J, Gal Y, Jin S (2008) Novel hybrid polymer photovoltaics made by generating silver nanoparticles in polymer: fullerene bulk-heterojunction structures. Sol Energy Mater Sol Cells 92:397–401. doi:10.1016/j.solmat.2007.09.017
Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964. doi:10.1021/es801785m
Neal AL (2008) What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371. doi:10.1007/s10646-008-0217-x
Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397
Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557. doi:10.1038/nmat2442
Nita T (2008) Synthesis of antimicrobial polymer composition and in vitro drugs release study. e-Polymers
Ogden J, Bogdanchikova N, Corker J, Petranovskii V (1999) Structure of silver clusters embedded in erionite channels. Eur Phys J D 9:605–608. doi:10.1007/s100530050509
Pal S, Tak Y, Song J (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. doi:10.1128/AEM.02218-06
Pal S, Tak YK, Joardar J, Kim W, Lee JE, Han MS, Song JM (2009) Nanocrystalline silver supported on activated carbon matrix from hydrosol: antibacterial mechanism under prolonged incubation conditions. J Nanosci Nanotechnol 9:2092–2103. doi:10.1166/jnn.2009.427
Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma V, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi:10.1021/jp063826h
Panyala NR, Peña-Méndez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129
Park H, Kim J, Kim J, Lee J, Hahn J, Gu M, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032. doi:10.1016/j.watres.2008.12.002
Petering H (1976) Pharmacology and toxicology of heavy-metals-silver. Pharmacol Ther A 1:127–130. doi:10.1016/0362-5478(76)90002-4
Pillai Z, Kamat P (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951. doi:10.1021/jp037018r
Raffi M, Hussain F, Bhatti T, Akhter J, Hameed A, Hasan M (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196
Rejeski D (2009) Nanotechnology and consumer products. http://www.nanotechproject.org/publications/archive/nanotechnology_consumer_products/. Accessed 22 February 2010
Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet J (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876. doi:10.1093/jac/dkn034
Ruparelia J, Chatteriee A, Duttagupta S, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716. doi:10.1016/j.actbio.2007.11.006
Saito Y, Wang J, Batchelder D, Smith D (2003) Simple chemical method for forming silver surfaces with controlled grain sizes for surface plasmon experiments. Langmuir 19:6857–6861. doi:10.1021/la0301240
Sambhy V, Sen A (2008) Novel process of incorporating silver biocides into polymers. Chim Oggi 26:16–18
Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504. doi:10.1016/j.biortech.2008.05.048
Sanpui P, Murugadoss A, Prasad P, Ghosh S, Chattopadhyay A (2008) The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int J Food Microbiol 124:142–146. doi:10.1016/j.ijfoodmicro.2008.03.004
Schneider S, Halbig P, Grau H, Nickel U (1994) Reproducible preparation of silver sols with uniform particle-size for application in surface-enhanced raman-spectroscopy. Photochem Photobiol 60:605–610. doi:10.1111/j.1751-1097.1994.tb05156.x
Schrand A, Braydich-Stolle L, Schlager J, Dai L, Hussain S (2008) Can silver nanoparticles be useful as potential biological labels? Nanotechnology 19. doi: 10.1088/0957-4484/19/23/235104
Schreurs W, Rosenberg H (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 152:7–13
Senapati S, Mandal D, Ahmad A, Khan M, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys A 78A:101–105
Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Progr 19:1627–1631. doi:10.1021/Bp034070w
Sharma S, Thakur M, Deb M (2007) Synthesis of silver nanoparticles using N-1, N-2-diphenylbenzamidine by microwave irradiation method. J Exp Nanosci 2:251–256. doi:10.1080/17458080701753744
Sharma S, Thakur M, Deb MK (2008) Preparation of silver nanoparticles by microwave irradiation. Curr Nanosci 4:138–140
Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96. doi:10.1016/j.cis.2008.09.002
Shirtcliffe N, Nickel U, Schneider S (1999) Reproducible preparation of silver sols with small particle size using borohydride reduction: for use as nuclei for preparation of larger particles. J Colloid Interface Sci 211:122–129. doi:10.1006/jcis.1998.5980
Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18. doi: 10.1088/0957-4484/18/22/225103
Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353. doi:10.1016/S0168-6445(03)00047-0
Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634. doi:10.1007/s10295-006-0139-7
Singh M, Sinha I, Mandal R (2009) Role of pH in the green synthesis of silver nanoparticles. Mater Lett 63:425–427. doi:10.1016/j.matlet.2008.10.067
Slonczewski J, Foster J (2009) Microbiology: an evolving science. W. W. Norton & Co, New York
Smetana A, Klabunde K, Sorensen C (2005) Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. J Colloid Interface Sci 284:521–526. doi:10.1016/j.jcis.2004.10.038
Smetana A, Klabunde K, Marchin G, Sorensen C (2008) Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24:7457–7464. doi:10.1021/la800091y
Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182. doi:10.1016/j.jcis.2004.02.012
Song J, Kim B (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioproc Biosyst Eng 32:79–84. doi:10.1007/s00449-008-0224-6
Stoeva S, Klabunde K, Sorensen C, Dragieva I (2002) Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J Am Chem Soc 124:2305–2311. doi:10.1021/ja012076g
Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal-ions. Free Radic Biol Med 18:321–336. doi:10.1016/0891-5849(94)00159-H
Sun L, Singh A, Vig K, Pillai S, Singh S (2008) Silver nanoparticles inhibit replication of respiratory syncytial virus. J Biomed Nanotechnol 4:149–158. doi:10.1166/jbn.2008.012
Sung J, Ji J, Yoon J, Kim D, Song M, Jeong J, Han B, Han J, Chung Y, Kim J, Kim T, Chang H, Lee E, Lee J, Yu I (2008) Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20:567–574. doi:10.1080/08958370701874671
Teeguarden J, Hinderliter P, Orr G, Thrall B, Pounds J (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312. doi:10.1093/toxsci/kfl165
Tomsic B, Simoncic B, Orel B, Zerjav M, Schroers H, Simoncic A, Samardzija Z (2009) Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr Polym 75:618–626. doi:10.1016/j.carbpol.2008.09.013
Venediktov E, Padokhin V (2008) Synthesis of silver nanoclusters in starch aqueous solutions. Russ J Appl Chem 81:2040–2042. doi:10.1134/S1070427208110323
Vertelov G, Krutyakov Y, Efremenkova O, Olenin A, Lisichkin G (2008) A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles. Nanotechnology 19. doi: 10.1088/0957-4484/19/35/355707
Vigneshwaran N, Ashtaputre N, Varadarajan P, Nachane R, Paralikar K, Balasubramanya R (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418. doi:10.1016/j.matlet.2006.07.042
West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5:285–292. doi:10.1146/annurev.bioeng.5.011303.120723
Xu X, Brownlow W, Kyriacou S, Wan Q, Viola J (2004) Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43:10400–10413. doi:10.1021/bi036231a
Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X (2006) Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles. Eur Phys J D 42:2081–2087. doi:10.1016/j.eurpolymj.2006.03.032
Yanagihara N, Tanaka Y, Okamoto H (2001) Formation of silver nanoparticles in poly(methyl methacrylate) by UV irradiation. Chem Lett 30:796–797
Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20. doi: 10.1088/0957-4484/20/8/085102
Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4. Nanocrystals 314:964–967. doi:10.1126/science.1131475
Yeo M, Kang M (2008) Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29:1179–1184
Yeo M, Yoon J (2009) Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Mol Cell Toxicol 5:23–31
Yin H, Yamamoto T, Wada Y, Yanagida S (2004) Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Mater Chem Phys 83:66–70. doi:10.1016/j.matchemphys.2003.09.006
Yoon K, Byeon J, Park C, Hwang J (2008a) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol 42:1251–1255. doi:10.1021/es0720199
Yoon K, Byeon J, Park J, Ji J, Bae G, Hwang J (2008b) Antimicrobial characteristics of silver aerosol nanoparticles against Bacillus subtilis bioaerosols. Environ Eng Sci 25:289–293. doi:10.1089/ees.2007.0003
Yu D (2007) Formation of colloidal silver nanoparticles stabilized by Na+-poly(gamma-glutamic acid)-silver nitrate complex via chemical reduction process. Colloids Surf B 59:171–178. doi:10.1016/j.colsurfb.2007.05.007
Yu D, Yam V (2004) Controlled synthesis of monodisperse silver nanocubes in water. J Am Chem Soc 126:13200–13201. doi:10.1021/ja046037r
Zeng H, Zhao C, Qiu J, Yang Y, Chen G (2007) Preparation and optical properties of silver nanoparticles induced by a femtosecond laser irradiation. J Cryst Growth 300:519–522. doi:10.1016/j.jcrysgro.2006.11.308
Zhang Y, Peng H, Huang W, Zhou Y, Yan D (2008) Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J Colloid Interface Sci 325:371–376. doi:10.1016/j.jcis.2008.05.063
Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li QL, Alvarez PJJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723. doi:10.1016/j.watres.2008.11.014
Acknowledgments
Financial support for this research was provided by the University of California Toxic Substances Research and Training Program: Lead Campus Program in Nanotoxicology.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Marambio-Jones, C., Hoek, E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12, 1531–1551 (2010). https://doi.org/10.1007/s11051-010-9900-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11051-010-9900-y