Skip to main content
Log in

Surfactant-modified nickel zinc iron oxide/polymer nanocomposites for radio frequency applications

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Low loss, flexible, polymer nanocomposites with improved magneto-dielectric properties at radio frequencies (RF) were successfully fabricated. Surfactant-modified nickel zinc iron oxide (NiZnFe2O4) nanoparticles with ferrimagnetic behavior at room temperature were synthesized by a seed-mediated growth method. The surfactant prevented NiZnFe2O4 particle aggregation and provided compatibility with [styrene-b-ethylene/butylene-b-styrene] block copolymer matrices. NiZnFe2O4/polymer composites were prepared by a solution-casting method. Experimental results showed that the dielectric permittivity (ɛr) and magnetic permeability (μr) of the polymer composite increased with increasing amount of NiZnFe2O4 doping. The dielectric loss (tanδ) was less than 0.010 at 1 GHz frequency. The increased miniaturization factor ((ɛrμr)1/2) and relative wave impedance ((μrr)1/2) of the NiZnFe2O4 nanocomposites could potentially lead to a reduced RF device’s physical size with ease in impedance matching. Dynamic mechanical analysis (DMA) revealed that nanocomposites maintained 125% strain (elongation at break) with 30% nanoparticle doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Buerkle A, Sarabandi K (2005) A wide-band, circularly polarized, magnetodielectric resonator antenna. IEEE Trans Antennas Propag 53:3436–3442

    Article  ADS  Google Scholar 

  • Burukhin AA, Churagulov BR, Oleinikov NN, Meskin PE (2001) Synthesis of nanosized ferrite powders from hydrothermal and supercritical solutions. Russ J Inorg Chem 46:646–651

    Google Scholar 

  • Cullity BD (1965) Elements of X-ray diffraction. Addison-Wesley, Reading, MA

    Google Scholar 

  • Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  CAS  PubMed  Google Scholar 

  • Denver H, Hong J, Borca-Tasciuc DA (2007) Fabrication and characterization of nickel nanowire polymer composites. Mater Res Soc Symp Proc 963:0963-Q20-60

    Google Scholar 

  • Goya GF, Berquo TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528

    Article  CAS  ADS  Google Scholar 

  • Gupta N, Kashyap SC, Dube DC (2005) Microwave behavior of substituted lithium ferrite composites in X-band. J Magn Magn Mater 288:307–314

    Article  CAS  ADS  Google Scholar 

  • Hayashimto Y, Sakamoto W, Yogoa T (2007) Synthesis of nickel zinc ferrite nanoparticle/organic hybrid from metalorganics. J Mater Res 22:1967–1974

    Article  CAS  ADS  Google Scholar 

  • JCPDS—International Centre for Diffraction Data (1991) Powder diffraction file alphabetical index. Swarthmore, PA, USA, pattern# 08-234

  • Koulouridis S, Kiziltas G, Zhou YJ, Hansford DJ, Volakis JL (2006) Polymer-ceramic composites for microwave applications: fabrication and performance assessment. IEEE Trans Microw Theory Tech 54:4202–4208

    Article  CAS  ADS  Google Scholar 

  • Majewski P, Krysinski P (2008) Synthesis, surface modifications, and size-sorting of mixed nickel-zinc ferrite colloidal magnetic nanoparticles. Chem Eur J 14:7961–7968

    Article  CAS  Google Scholar 

  • Mosallaei H, Sarabandi K (2004) Magneto-dielectrics in electromagnetics: concept and applications. IEEE Trans Antennas Propag 52:1558–1567

    Article  ADS  Google Scholar 

  • Pardavi-Horvath M (2000) Microwave applications of soft ferrites. J Magn Magn Mater 215:171–183

    Article  ADS  Google Scholar 

  • Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  CAS  ADS  PubMed  Google Scholar 

  • Rao BP, Rao GSN, Kumar AM, Rao KH, Murthy YLN, Hong SM, Kim CO, Kim C (2007) Soft chemical synthesis and characterization of Ni 0.65 Zn 0.35 Fe 2 O 4 nanoparticles. J Appl Phys 101:123902

    Article  ADS  Google Scholar 

  • Schallibaum J, Torre FHD, Caseri WR, Loffler JF (2009) Large-scale synthesis of defined cobalt nanoparticles and magnetic metal–polymer composites. Nanoscale 1:374–381

    Article  CAS  ADS  PubMed  Google Scholar 

  • Shirakata Y, Hidaka N, Ishitsuka M, Teramoto A, Ohmi T (2008) High permeability and low loss Ni–Fe composite material for high-frequency applications. IEEE Trans Magn 44:2100–2106

    Article  CAS  ADS  Google Scholar 

  • Swaminathan R, McHenry ME, Poddar P, Srikanth H (2005) Magnetic properties of polydisperse and monodisperse NiZn ferrite nanoparticles interpreted in a surface structure model. J Appl Phys 97:10G104

    Article  Google Scholar 

  • Uskokovic V, Drofenik M, Ban I (2004) The characterization of nanosized nickel-zinc ferrites synthesized within reverse micelles of CTAB/1-hexanol/water microemulsion. J Magn Magn Mater 284:294–302

    Article  CAS  ADS  Google Scholar 

  • von Aulock WH, Boxer AS, Ollom JF, Rauchmiller RF (1965) Handbook of microwave ferrite materials. Academic Press, New York

    Google Scholar 

  • Watzky MA, Finke RG (1997) Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119:10382–10400

    Article  CAS  Google Scholar 

  • Wu NQ, Fu L, Su M, Aslam M, Wong KC, Dravid VP (2004) Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett 4:383–386

    Article  CAS  ADS  Google Scholar 

  • Yan SF, Zhou EL (2005) Transmission electron microscopy observation of the microemulsion process and the magnetic properties of the resultant nanocrystalline Ni-Zn ferrites. J Mater Res 20:2627–2631

    Article  CAS  ADS  Google Scholar 

  • Yang TI, Brown RNC, Kempel LC, Kofinas P (2008) Magneto-dielectric properties of polymer-Fe 3 O 4 nanocomposites. J Magn Magn Mater 320:2714–2720

    Article  CAS  ADS  Google Scholar 

  • Yashchyshyn Y, Modelski JW (2005) Rigorous analysis and investigations of the scan antennas on a ferroelectric substrate. IEEE Trans Microw Theory 53:427–438

    Article  Google Scholar 

  • Zhang HE, Zhang BF, Wang GF, Dong XH, Gao Y (2007) The structure and magnetic properties of Zn 1-x Ni x Fe 2 O 4 ferrite nanoparticles prepared by sol–gel auto-combustion. J Magn Magn Mater 312:126–130

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This article is based upon study supported by the Air Force Office of Scientific Research, Grant # FA95500910430. We also acknowledge the support of the Maryland NanoCenter and its NispLab. The NispLab is supported in part by the NSF as a MRSEC Shared Experimental Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kofinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, TI., Brown, R.N.C., Kempel, L.C. et al. Surfactant-modified nickel zinc iron oxide/polymer nanocomposites for radio frequency applications. J Nanopart Res 12, 2967–2978 (2010). https://doi.org/10.1007/s11051-010-9887-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9887-4

Keywords

Navigation