Skip to main content
Log in

Mn–ferrite nanoparticles via reverse microemulsions: synthesis and characterization

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Mn–ferrite nanoparticles were synthesized by thermal treatment at 800 °C of manganese and iron oxo-hydroxides obtained via water-in-oil microemulsions consisting of n-hexanol as continuous phase, cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant and aqueous solutions of metal salts and precipitant agent (tetramethyl ammonium hydroxide) as reagents. Nanoparticles were synthesized using a multi-microemulsion approach. Two different co-precipitation routes are described depending on the Fe(II) or Fe(III) precursor salts. The influence of salt concentration and digestion process on the final products was examined. The nanoparticles were characterized by X-ray diffraction accompanied by Rietveld analysis, transmission electron microscopy, thermal analysis, infrared spectroscopy, and SQUID magnetometry. In all the synthesis reported in this study MnFe2O4 was observed only after thermal treatment at 800 °C of the as-prepared precursors. Almost spherical nanocrystalline MnFe2O4 ranging from 12 to 39 nm was obtained starting from chlorides or mixed chloride–sulfate salts as precursors. Low values of reduced remanent magnetization (M r/M s) and coercive field (H c) induce to believe that a fraction of superparamagnetic particle is present at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad SI, Friberg S (1972) Catalysis in micellar and liquid-crystalline phases. I. System water-hexadecyltrimethylammonium bromide-hexanol. J Am Chem Soc 94:5196–5199

    Article  CAS  Google Scholar 

  • Alvani C, Ennas G, La Barbera A, Marongiu G, Padella F, Varsano F (2005) Synthesis and characterization of nanocrystalline MnFe2O4: advances in thermochemical water splitting. Int J Hydrog Energy 30:1407–1411

    Article  CAS  Google Scholar 

  • Ammar S, Helfen A, Jouini N, Fievet F, Rosenman I, Villain F, Molinie P, Danot M (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J Mater Chem 11:186–192

    Article  CAS  Google Scholar 

  • Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482

    Article  CAS  Google Scholar 

  • Bellusci M, Canepari S, Ennas G, La Barbera A, Padella F, Santini A, Scano A, Seralessandri L, Varsano F (2007) Phase evolution in synthesis of manganese ferrite nanoparticles. J Am Ceram Soc 90:3977–3983

    CAS  Google Scholar 

  • Carpenter EE, O’Connor J, Harris VG (1999) Atomic structure and magnetic properties of MnFe2O4 nanoparticles produced by reverse micelle synthesis. J Appl Phys 85:5175–5177

    Article  CAS  Google Scholar 

  • Carta D, Casula MF, Falqui A, Loche D, Mountjoy G, Sangregorio C, Corrias A (2009) A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M = Mn, Co, Ni). Phys Chem C 113:8606–8615

    Google Scholar 

  • Chen JP, Sorensen CM, Klabunde KJ, Hadjipanayis GC, Devlin E, Kostikas A (1996) Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B 54:9288–9296

    Article  CAS  Google Scholar 

  • Coey JMD (1971) Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys Rev Lett 27:1140–1142

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2000) The iron oxide in the laboratory. Wiley-VCH, NewYork

    Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxide. Wiley-VCH, NewYork

    Google Scholar 

  • Cushing BL, Kolesnichenko VL, O’Connor C (2004) Recent advances in the liquid- phase syntheses of inorganic nanoparticles. J Chem Rev 104:3893–3946

    Article  CAS  Google Scholar 

  • Davies KJ, Wells S, Charles SW (1993) The effect of temperature and oleate adsorption on the growth of maghemite particles. J Magn Magn Mater 122:24–28

    Article  CAS  Google Scholar 

  • Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine- particle systems. Advances in chemical physics. John Wiley and Sons, New York, p XCVIII

    Google Scholar 

  • Dousma J, Den Ottelander D, De Bruyn PL (1979) The influence of sulfate ions on the formation of iron (III) oxide. J Inorg Nucl Chem 41:1565–1568

    Article  CAS  Google Scholar 

  • Feldmann C (2001) Preparation of nanoscale pigment particles. Adv Mater 13:1301–1303

    Article  CAS  Google Scholar 

  • Feldmann C (2003) Polyol-mediated synthesis of nanoscale functional materials. Adv Funct Mater 13:101–107

    Article  CAS  Google Scholar 

  • Feldmann C, Jungk H-O (2001) Polyol-mediated preparation of nanoscale oxide particles. Angew Chem Int Ed 40:359–362

    Article  CAS  Google Scholar 

  • Fiorani D, Dormann JL (1991) Conference proceedings of Rome, Italy

  • Gnanaprakash G, Philip J, Raj B (2007) Effect of divalent metal hydroxide solubility product on the size of ferrite nanoparticles. Mater Lett 61:4545–4548

    Article  CAS  Google Scholar 

  • Haneda K, Morrish AH (1988) Noncollinear magnetic structure of CoFe2O4 small particles. J Appl Phys 63:4258–4260

    Article  CAS  Google Scholar 

  • Harrison FW, Osmond WP, Teale RW (1957) Cation distributionand magnetic moment of manganese ferrite. Phys Rev 105:865–866

    Article  Google Scholar 

  • Hicks T (2004) Preparation, characterization and activity of mono-dispersed supported cataylsts. PhD. Thesis, Georgia Institute of Technology, USA

  • ICSD Database (Inorganic Crystal Structure Database) (2007) Karlsruhe, Germany

  • Jay AH, Andrews KW (1946) Composition of some binary oxide systems. J Iron Steel Inst 152:15

    Google Scholar 

  • Jeyadevan B, Tohji K, Nakatsuka K, Narayanasamy A (2000) Irregular distribution of metal ions in ferrites prepared by co-precipitation technique structure analysis of Mn–Zn ferrite using extended X-ray absorption fine structure. J Magn Magn Mater 217:99–105

    Article  CAS  Google Scholar 

  • Jolivet JP (2000) Metal oxide chemistry and synthesis. From solution to solid state. Wiley, Chichester

    Google Scholar 

  • Jolivet JP, Chaneac C, Tronc E (2004) Iron oxides chemistry. From molecular clusters to extended solid networks. Chem Commun 5:481–487

    Article  Google Scholar 

  • Kodama T, Ookubo M, Miura S, Kitayama Y (1996) Synthesis and characterization of ultrafine Mn(II)-bearing ferrite of type Mn x Fe3 x O4 by coprecipitation. Mater Res Bull 31:1501–1512

    Article  CAS  Google Scholar 

  • Komarneni S, Fregeau E, Breval E, Roy R (1988) Hydrothermal preparation of ultrafine ferrites and their sintering. J Am Ceram Soc 71:C-26–C28

    Google Scholar 

  • Lee Y, Rho J, Jung B (2003) Preparation of magnetic ion-exchange resins by the suspension polymerization of styrene with magnetite. J Appl Polym Sci 89:2058–2067

    Article  CAS  Google Scholar 

  • Li T, Deng Y, Song X, Jin Z, Zhang Y (2003) The formation of magnetite nanoparticle in ordered system of the soybean lecithin. Bull Korean Chem Soc 24:957–960

    Article  CAS  Google Scholar 

  • Liu C, Zuo B, Rondinone AJ, Zhang ZJ (2000) Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J Phys Chem B 104(6):1141–1145

    Article  CAS  Google Scholar 

  • Lopez-Quintela AM (2003) Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr Opin Colloid Interface Sci 8:137–144

    Article  CAS  Google Scholar 

  • Lutterotti L, Matthies S, Wenk HR (1999) MAUD: a friendly Java program for material analysis using diffraction. IUCr Newsl CPD 21:14–15

    Google Scholar 

  • Misra RDK, Gubbala S, Kale A, Egelhoff WF Jr (2004) A comparison of the magnetic characteristics of nanocrystalline Ni, Zn, and Mn ferrites synthesized by reverse micelle technique. Mater Sci Eng 111:164–174

    Article  Google Scholar 

  • Morales MP, Veintemillas S, Montero MI, Serna CJ, Roig A, Casas L, Martinez B, Sandiumenge F (1999) Surface and internal spin canting in γ -Fe2O3 nanoparticles. Chem Mater 11:3058–3064

    Article  CAS  Google Scholar 

  • Morrish AH (1965) The physical principles of magnetism. Wiley, New York

    Google Scholar 

  • Pankhurst QA, Connelly J, Jones SK, Dobsonb J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181

    Article  CAS  Google Scholar 

  • PCPDF-WIN, JCPDS- International Center for Diffraction Data (1998) Swarthome, PA

  • Peddis D, Mansilla MV, Morup S, Cannas C, Musinu A, Piccaluga G, Orazio F, Lucari F, Fiorani D (2008) Spin canting and magnetic anisotropy in ultrasmall CoFe2O4 nanoparticles. J Phys Chem B 112:8507–8513

    Article  CAS  Google Scholar 

  • Pitkethy MJ (2004) Nanomaterials—the driving force. Mater Today 7:20–29

    Article  Google Scholar 

  • Pileni MP (2003) Role of soft colloidal templates in the control of size and shape of inorganic nanocrystals. Nat Mater. 2:145–150

    Article  CAS  Google Scholar 

  • Rajamathi M, Ghosh M, Seshadri R (2002) Hydrolysis and amine-capping in a glycol solvent as a route to soluble maghemite gamma-Fe2O3 nanoparticles. Chem Commun 10:1152–1153

    Article  Google Scholar 

  • Seki M, Sato T, Usui S (1988) Observations of ultrafine ZnFe2O4 particles with transmission electron microscopy. J Appl Phys 63:1424–1427

    Article  CAS  Google Scholar 

  • Shen L, Laibinis PE, Hatton TA (1999) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15:447–453

    Article  CAS  Google Scholar 

  • (1997) Soft ferrites. A user’s guide, chap. 1, 2, and 6. Magnetic Materials Producers Association, Chicago, IL

  • Song Q, Ding Y, Wang ZL, Zhang ZJ (2007) Tunning the thermal stability of molecular precursor for the nonhydrolytic synthesis of magnetic MnFe2O4 spinel nanocrystals. Chem Mater 19:4633–4638

    Article  CAS  Google Scholar 

  • Tourinho FA, Franck R, Massart R (1990) Aqueous ferrofluids based on manganese and cobalt ferrites. J Mater Sci 25:3249–3254

    Article  CAS  Google Scholar 

  • West AR (1999) Basic solid state chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Young RA (1995) The Rietveld method, IUCr monographs on crystallography 5. Oxford University Press, Oxford

    Google Scholar 

  • Zhang ZJ, Wang ZL, Chakoumakos BC, Yin JS (1998) Temperature dependence of cation distribution and oxidation state in magnetic Mn–Fe ferrite nanocrystals. J Am Chem Soc 120:1800–1804

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by MIUR (Ministero Istruzione Università e Ricerca) in the frame of TEPSI project and by Fondazione Banco di Sardegna. D. Peddis was granted by RAS (Regione Sardegna – Centro regionale di Programmazione) co-founded by PO Sardegna FSE 2007-2013 sulla L.R.7/2007 “Promozione della ricerca scientifica e dell’innovazione tecnologica in Sardegna”. We want also to thank Dr Darragh Gaffney, MSSI (Material and Surface Science Institute), University of Limerick, Ireland, for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Scano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scano, A., Ennas, G., Frongia, F. et al. Mn–ferrite nanoparticles via reverse microemulsions: synthesis and characterization. J Nanopart Res 13, 3063–3073 (2011). https://doi.org/10.1007/s11051-010-0205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0205-y

Keywords

Navigation