Skip to main content
Log in

Grafting of PMMA brushes on titania nanoparticulate surface via surface-initiated conventional radical and “controlled” radical polymerization (ATRP)

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Stable dispersion of titania nanoparticles in organic solvents are obtained by grafting poly(methyl methacrylate) layer on to the surface. Titania nanoparticles are synthesized through the hydrolysis of titanium (IV) isopropoxide. The average size of the titania particles is found to be 15 ± 2 nm. The polymer layer was introduced onto the surface by immobilizing the initiating moiety. Azo initiator moiety required for surface-initiated conventional free radical polymerization and a tertiary bromide initiator moiety required for ATRP are attached covalently to the titania nanoparticulate surface through the surface hydroxyl groups. The “encapsulation” of PMMA layer results in the steric stabilization of the titania nanoparticles. Another important finding is that it is possible to grow polymer layer in a controlled fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Anpo M, Shima T, Kodama S, Kubokawa Y (1987) Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. J Phys Chem 91(16):4305–4310

    Article  CAS  Google Scholar 

  • Ayllon JA, Peiro AM, Saadonn L, Vigil E, Domenech X, Peral J (2000) Preparation of anatase powders from fluorine-complexed titanium (IV) aqueous solution using microwave irradiation. J Mater Chem 10(8):1911–1914

    Article  CAS  Google Scholar 

  • Bedja I, Kamat PV, Lapin AG, Hotchandani S (1997) Photosensitization of nanocrystalline ZnO films by bis(2,2′-bipyridine)(2,2′-bipyridine-4,4′-dicarboxylic acid)ruthenium(II). Langmuir 13(8):2398–2403

    Article  CAS  Google Scholar 

  • Ben Ouada H, Hommel H, Legrand AP, Balard H, Papirer E (1988) Organization of the layers of polyethylene oxide grafted with different densities on silica. J Colloid Interface Sci 122(2):441–449

    Article  CAS  Google Scholar 

  • Bönneman H, Richards RM (2001) Nanoscopic metal particles––synthetic methods and potential applications. Eur J Inorg Chem 10:2455–2480

    Article  Google Scholar 

  • Boven G, Oosterling MLCM, Challa G, Schouten AJ (1990) Grafting kinetics of poly(methyl methacrylate) on microparticulate silica. Polymer 31(12):2377–2383

    Article  CAS  Google Scholar 

  • Bridger K, Vincent B (1980) The terminal grafting of poly(ethylene oxide) chains to silica surfaces. Eur Polym J 16(10):1017–1021

    Article  CAS  Google Scholar 

  • Carlier E, Guyot A, Revillion A (1992) Functional polymers supported on porous silica. II. Radical polymerization of vinylbenzyl chloride from grafted precursors. React Polym 16(2):115–124

    Article  CAS  Google Scholar 

  • Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95(1):49–68

    Article  CAS  Google Scholar 

  • Hamann R, Laible R (1973) Polyreaktionen an pigmentoberflächen. VI. Mitteilung: radikalisch initiierte polyreaktionen an SiO2-oberflächen. Angew Makromol Chem 48:97–133

    Google Scholar 

  • Hayashi H, Torii K (2002). Hydrothermal synthesis of titania photocatalyst under subcritical and supercritical water conditions. J Mater Chem 12(12):3671–3676

    Article  CAS  Google Scholar 

  • Karch J, Birringer R, Gleiter H (1987) Ceramics ductile at low temperature. Nature 330:556–558

    Article  CAS  Google Scholar 

  • Kavan L, Kratochvilova IK, Gratzel M (1995) Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime. J Electroanal Chem 394(1–2):93–102

    Article  Google Scholar 

  • Kraeutler B, Bard AJ (1978) Heterogeneous photocatalytic decomposition of saturated carboxylic acids on titanium dioxide powder. Decarboxylative route to alkanes. J Am Chem Soc 100(19):5985–5992

    Article  CAS  Google Scholar 

  • Kumbhar A, Chumanov G (2005) Synthesis of iron(III)-doped titania nanoparticles and its application for photodegradation of sulforhodamine-B pollutant. J Nanopart Res 7(4–5):489–498

    Article  CAS  Google Scholar 

  • Matsuno R, Yamamoto K, Otsuka H, Takahara A (2003) Polystyrene-grafted magnetite nanoparticles prepared through surface-initiated nitroxyl-mediated radical polymerization. Chem Mat 15(1):3–5

    Article  CAS  Google Scholar 

  • O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature 353(6346):737–740

    Article  CAS  Google Scholar 

  • Prucker O, Rühe J (1998) Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators. Macromolecules 31:592–601

    Article  CAS  Google Scholar 

  • Raghuraman GK, Dhamodharan R (2006) Surface-initiated atom transfer radical polymerization of methyl methacrylate from magnetite nanoparticles at ambient temperature. J Nanosci Nanotech 6(7):2018–2024

    Article  CAS  Google Scholar 

  • Ramakrishnan A, Dhamodharan R (2003) Facile synthesis of ABC and CBABC multiblock copolymers of styrene, tert-butyl acrylate, and methyl methacrylate via room temperature ATRP of MMA. Macromolecules 36:1039–1046

    Article  CAS  Google Scholar 

  • Ramakrishnan A, Dhamodharan R, Rühe J (2002) Controlled growth of PMMA brushes on silicon surface at room temperature. Macromol Rapid Commun 23:612–616

    Article  CAS  Google Scholar 

  • Ramakrishnan A, Dhamodharan R, Rühe J (2006) Growth of poly(methyl methacrylate) brushes on silicon surfaces by atom transfer radical polymerization. J Poly Sci Part A 44:1758–1769

    Article  CAS  Google Scholar 

  • Rao MV, Rajeshwar K, Vernekar VRP, DuBow J (1980) Photosynthetic production of hydrogen and hydrogen peroxide on semiconducting oxide grains in aqueous solutions. J Phys Chem 84(15):1987–1991

    Article  CAS  Google Scholar 

  • Schmidt R, Zhao T, Green JB, Dyer DJ (2002) Photoinitiated polymerization of styrene from self-assembled monolayers on gold. Langmuir 18(4):1281–1287

    Article  CAS  Google Scholar 

  • Tsubokawa N, Hosoya M, Yanodori K, Sone Y (1990) Grafting onto carbon-black reaction of functional-groups on carbon-black with acyl chloride-capped polymers. J Macromol Sci Chem A27:445–457

    CAS  Google Scholar 

  • Tsubokawa N, Yoshihara T, Sone Y (1992) Grafting of polymers onto carbon whisker by anionic graft polymerization of vinyl monomers using metallized aromatic rings and/or phenoxy lithium groups on the surface as initiator. J Polym Sci Part A: Polym Chem 30(4):561–567

    Article  CAS  Google Scholar 

  • von Werne T, Patten TE (2001) Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well defined hybrid nanostructures and for understanding the chemistry of controlled/living radical polymerizations from surfaces. J Am Chem Soc 123:7497–7505

    Article  Google Scholar 

  • Xiaowu F, Lijun L, Phillip BM (2006) Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: a new route toward polymer–matrix nanocomposites. Comp Sci Tech 66:1198–1204

    Article  Google Scholar 

  • Yang S, Lian G (2005) Preparation of titanium dioxide nanocrystallite with high photocatalytic activities. J Am Ceram Soc 88:968–970

    Article  Google Scholar 

Download references

Acknowledgements

Council of Scientific and Industrial Research (CSIR), India and Volkswagen Research Foundation, Germany are gratefully acknowledged by the authors for providing necessary funds to carry out this work. The authors wish to thank Mrs. D. Mössner and Dr. S. Santer, Chemistry and Physics of Interfaces, Department for Microsystems and Engineering (IMTEK), Freiburg, Germany for X-ray photoelectron spectroscopy and Transmission Electron Microscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavachari Dhamodharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghuraman, G.K., Rühe, J. & Dhamodharan, R. Grafting of PMMA brushes on titania nanoparticulate surface via surface-initiated conventional radical and “controlled” radical polymerization (ATRP). J Nanopart Res 10, 415–427 (2008). https://doi.org/10.1007/s11051-007-9268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9268-9

Keywords

Navigation