Skip to main content
Log in

A simple route to the synthesis of high-quality NiO nanoparticles

  • Brief communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Dispersed nickel oxide nanoparticles were obtained by a simple and low-cost method using a mixture of gelatin as organic precursor and NiCl2 · 6H2O as Ni source. The average particle size was estimated from X-ray powder diffraction (XRPD) peaks using the Rietveld refinement. The values ranged from 3.2 to 79 nm. We observed that the particle size changes as a function of synthesis time, with a notable decrease after the addition of NaOH to the solution. Field emission scanning electron microscopy (FE-SEM) measurements show that particles have well defined shapes and are dispersed in an organic matrix. X-ray absorption near edge spectroscopy (XANES) shows also the formation of fcc NiO nanoparticles structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bødker F., Hansen M.F., Koch C.B., Morup S. (2000). Particle interaction effects in antiferromagnetic NiO nanoparticles. J. Mag. Magnetic Mat. 221(1–2): 32–36

    Article  Google Scholar 

  • Caglioti G., Paoletti A., Ricci F.P. (1958). Choice of collimators for a crystal spectrometer for neutron diffraction. Nuclear Inst. Methods 3(4): 223–228

    Article  CAS  Google Scholar 

  • Cullity B.D., Stock S.R. (2001) Elements of X-ray Diffraction, 3rd edition. Prentice Hall, New Jersey

    Google Scholar 

  • Duque J.G.D., Macedo M.A., Moreno N.O., Lopez J.L., Pfanes H.D. (2001). Magnetic and structural properties of CoFe2O4 thin films synthesized via a sol-gel process. J. Mag. Magnetic Mat. 226:1424–1425

    Article  Google Scholar 

  • Ferreira F.F., M.H. Tabacniks, M.C.A. Fantini, I.C. Faria & A. Gorenstein, 1996. Electrochromic nickel oxide thin films deposited under different sputtering conditions, Solid State Ionics 86–8, 971–976.

  • Kodama. R.H., Makhlouf S.A., Berkowitz A.E. (1997). Finite size effects in antiferromagnetic NiO nanoparticles. Phys. Rev. Lett. 79:1393–1396

    Article  CAS  Google Scholar 

  • Komsa-Penkova R., Koynov R., Kostov G., Tenchov B.G. (1996). Thermal stability of calf skin collagen type I in salt solutions. Biochim. Biopys. Acta: Protein Struct. Mol. Enzymol. 1297(2): 171–181

    Google Scholar 

  • Kozlov P.V., Burdygina G.I. (1983). The structure and properties of solid gelatin and the principles of their modification. Polymer 24(6): 651–666

    Article  CAS  Google Scholar 

  • Macêdo, M. A. & J. M. Sasaki, 2002. PI 0203876–5/BR

  • Makkus R.C., Hemmes K., Dewit J.H.W. (1994). A Comparative-study of NiO(Li), LiFeO2, And LiCoO2 porous cathodes for molten-carbonate fuel-cells. J. Electroch. Soc. 141(12): 3429–3438

    Article  CAS  Google Scholar 

  • Medeiros A.M.L., Miranda M.A.R., Menezes A.S., Jardim P.M., da Silva L.R.D., Gouveia S.T., Sasaki J.M. (2004). Synthesis and characterization of Cr2O3 nanoparticles obtained by gelatin. J. Met. Nanocryst. Mat. 20–21: 399–406

    Google Scholar 

  • Meneses, C.T., W. H. Flores & J. M. Sasaki, 2006. Direct observation of the formation of NiO nanoparticles by time-resolved X-ray absorption spectroscopy, in preparation

  • Rietveld H.M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystal. 22: 151–152

    Article  CAS  Google Scholar 

  • Seo D.J., Park S.B., Kang Y.C., Choy K.L. (2003). Formation of ZnO, MgO and NiO nanoparticles from aqueous droplets in flame reactor. J. Nanoparticle Res. 5:199–210

    Article  CAS  Google Scholar 

  • Smith N. (1936). The structure of thin films of metallic oxides and hydrates. J. Am. Chem. Soc. 58: 173–179

    Article  CAS  Google Scholar 

  • Tolentino H.C.N., Cezar J.C., Watanabe N., Piamonteze C., Souza-Neto N.M., Tamura E., Ramos A.Y., Neueschwander R. (2005). The dispersive X-ray absorption spectroscopy beamline at LNLS. Physica Scripta T115: 977–979

    Article  CAS  Google Scholar 

  • Turky A.M. (2003). Electrical surface and catalytic properties of NiO as influenced by doping with CuO and Ag2O. Appl. Catal. A Gen. 247(1): 83–93

    Article  CAS  Google Scholar 

  • Xiang L., Deng X.Y., Jin Y. (2002). Experimental study on synthesis of NiO nanoparticles. Scripta Materialia 47(4): 219–224

    Article  CAS  Google Scholar 

  • Young R.A., Wiles D.B. (1982). Profile shape functions in Rietveld refinements. J. Appl. Crystal. 15: 430–438

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian funding agencies: CNPq (project 470939/2003-6), FUNCAP and CAPES. The authors would like to thank the Laboratory of Electron Microscopy at Laboratório Nacional de Luz Síncrotron (LNLS) for the SEM measurements and Gelita for supplying the gelatin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.T. Meneses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meneses, C., Flores, W., Garcia, F. et al. A simple route to the synthesis of high-quality NiO nanoparticles . J Nanopart Res 9, 501–505 (2007). https://doi.org/10.1007/s11051-006-9109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9109-2

Key words

Navigation