Skip to main content
Log in

Effect of Topical Antifungal Luliconazole on Hyphal Morphology of Trichophyton mentagrophytes Grown on in vitro Onychomycosis Model

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Luliconazole, recently launched in Japan, is a novel topical imidazole antifungal agent for the treatment of onychomycosis. Using in vitro onychomycosis model, the effect of luliconazole on the morphology of the growing hyphae of Trichophyton mentagrophytes was investigated by scanning electron microscopy (SEM). The model was produced by placing human nail pieces on an agar medium seeded with conidia of T. mentagrophytes. After incubating the agar medium for 3 days, luliconazole was applied to the surface of the nail in which hyphal growth was recognized, then cultured for up to 24 h. The initial change after treatment with the drug was the formation of fine wrinkles on the surface of the hyphae, eventually, the hyphae were flattened, and after that, no hyphal growth was observed. On the other hand, when the nails were pretreated with luliconazole for 1 h, no hyphal growth was observed even after culturing for 24 h. This study suggests that luliconazole has a strong antifungal activity by inhibiting the ability of fungi to grow and the drug has both excellent nail permeation and retention properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Watanabe S, Harada T, Hiruma M, Iozumi K, Katoh T, Mochizuki T, Naka W. Japan Foot Week Group: Epidemiological survey of foot diseases in Japan: results of 30,000 foot checks by dermatologists. J Dermatol. 2010;37:397–406. https://doi.org/10.1111/j.1346-8138.2009.00741.x.

    Article  PubMed  Google Scholar 

  2. Ghannoum MA, Hajjeh RA, Scher R, Konnikov N, Gupta AK, Summerbell R, Sullivan S, Daniel R, Krusinski P, Fleckman P, Rich P, Odom R, Aly R, Pariser D, Zaiac M, Rebell G, Lesher J, Gerlach B, Ponce-de-Leon GF, Ghannoum A, Warner J, Isham N, Elewski B. A large-scale North American study of fungal isolates from nails: the frequency of onychomycosis, fungal distribution, and antifungal susceptibility patterns. J Am Acad Dermatol. 2000;43:641–8. https://doi.org/10.1067/mjd.2000.107754.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas J, Jacobson GA, Narkowicz CK, Peterson GM, Burnet H, Sharpe C. Toenail onychomycosis: an important global disease burden. J Clin Pharm Ther. 2010;35:497–519. https://doi.org/10.1111/j.1365-2710.2009.01107.x.

    Article  CAS  PubMed  Google Scholar 

  4. Elewski BE. Onychomycosis: treatment, quality of life, and economic issues. Am J Clin Dermatol. 2000;1:19–26. https://doi.org/10.2165/00128071-200001010-00002.

    Article  CAS  PubMed  Google Scholar 

  5. Gupta AK, Mays RR. The impact of onychomycosis on quality of life: a systematic review of the available literature. Skin Appendage Disord. 2018;4:208–16. https://doi.org/10.1159/000485632.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Roberts DT, Taylor WD, Boyle J. British Association of Dermatologists Guidelines for treatment of onychomycosis. Br J Dermatol. 2003;148:402–10. https://doi.org/10.1046/j.1365-2133.2003.05242.x.

    Article  CAS  PubMed  Google Scholar 

  7. Westerberg DP, Voyack MJ. Onychomycosis: current trends in diagnosis and treatment. Am Fam Physician. 2013;88:762–70.

    PubMed  Google Scholar 

  8. Daniel RC. Onychomycosis: burden of disease and the role of topical antifungal treatment. J Drugs Dermatol. 2013;12:1263–6.

    PubMed  Google Scholar 

  9. Japanese Dermatological Association: Guidelines for treatment of dermatological fungal disease-2019. J Dermatol. 2019;129: 2639–73.

  10. Nishiyama Y, Takahashi M, Maruyama N, Yamada T, Abe S. Scanning electron microscopic study of infection process of Trichophyton mentagrophytes on the in vitro tinea unguium model. Med Mycol Res. 2016;7:3–10.

    Google Scholar 

  11. Nishiyama Y, Takahara S, Abe S. Morphological effect of the new antifungal agent ME1111 on hyphal growth of Trichophyton mentagrophytes, determined by scanning and transmission electron microscopy. Antimicrob Agents Chemother. 2017;61:e01195. https://doi.org/10.1128/AAC.01195-16.

    Article  CAS  PubMed  Google Scholar 

  12. Niwano Y, Kuzuhara N, Kodama H, Yoshida M, Miyazaki T, Yamaguchi H. In vitro and in vivo antidermatophyte activities of NND-502, a novel optically active imidazole antimycotic agent. Antimicrob Agents Chemother. 1998;42:967–70. https://doi.org/10.1128/AAC.42.4.967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Uchida K, Tanaka T, Yamaguchi H. Achievement of complete mycological cure by topical antifungal agent NND-502 in guinea pig model of tinea pedis. Microbiol Immunol. 2003;47:143–6. https://doi.org/10.1111/j.1348-0421.2003.tb02797.x.

    Article  CAS  PubMed  Google Scholar 

  14. Koga H, Nanjoh Y, Makimura K, Tsuboi R. In vitro antifungal activities of luliconazole, a new topical imidazole. Med Mycol. 2009;47:640–7. https://doi.org/10.1080/13693780802541518.

    Article  CAS  PubMed  Google Scholar 

  15. Vanden BH. Mode of action of pyridine, pyrimidine, and azole antifungals. In: Berg D, Plempel M, editors. Sterol biosynthesis inhibitors. Chichester: Ellis Horwood; 1988. p. 78–119.

    Google Scholar 

  16. Hitchcock C, Dickinson K, Brown SB, Evans EG, Adams DJ. Interaction of azole antifungal antibiotics with cytochrome P450-dependent 14 α-sterol demethylase purified from Candida albicans. Biochem J. 1990;266:475–80. https://doi.org/10.1042/bj2660475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bogers M. Ultrastructural correlates of antimycotic treatment. In: McGinnis MR, editor. Current topics in medical mycology. New York: Springer; 1988. p. 1–39. https://doi.org/10.1007/978-1-4612-3730-3_1.

    Chapter  Google Scholar 

  18. Mercer EI. The mode of action of morpholines. In: Berg D, Plempel M, editors. Sterol biosynthesis inhibitors. Chichester: Ellis Horwood; 1988. p. 120–50.

    Google Scholar 

  19. Ryder NS. Mode of action of allylamines. In: Berg D, Plempel M, editors. Sterol biosynthesis inhibitors. Chichester: Ellis Horwood; 1988. p. 151–67.

    Google Scholar 

  20. Nishiyama Y, Maebashi K, Asagi Y, Hiratani T, Yamaguchi H, Yamada N, Taki A, Xiang Rong JI, Osumi M. Effect of SS717 on the ultrastructure of Trichophyton mentagrophytes as observed by scanning and transmission electron microscopy. Jpn J Med Mycol. 1991;32:43–54.

    Article  CAS  Google Scholar 

  21. Nishiyama Y, Asagi Y, Hiratani T, Yamaguchi H, Yamada N, Osumi M. Ultrastructural changes induced by terbinafine, a new antifungal agent, in Trichophyton mentagrophytes. Jpn J Med Mycol. 1991;32:165–75.

    Article  CAS  Google Scholar 

  22. Nishiyama Y, Asagi Y, Hiratani T, Yamaguchi H, Yamada N, Osumi M. Morphological changes associated with growth inhibition of Trichophyton mentagrophytes by amorolfine. Clin Exp Dermatol. 1992;17(Suppl. 1):13–7. https://doi.org/10.1111/j.1365-2230.1992.tb00271.x.

    Article  PubMed  Google Scholar 

  23. Tatsumi Y, Nagashima M, Shibanushi T, Iwata A, Kangawa Y, Inui F, William J, Siu J, Radhakrishnan P, Nishiyama Y. Mechanism of action of efinaconazole, a novel triazole antifungal. Antimicrob Agents Chemother. 2013;57:2405–9. https://doi.org/10.1128/AAC.02063-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hasuko M, Toga T, Tsunemitsu T, Matsumoto T, Koga H, Hirano H, Tsuboi R. Affinity of luliconazole to keratin prepared from healthy human nail and porcine hoof. Med Mycol J. 2016;57(1):J7-12. https://doi.org/10.3314/mmj.57.J7.

    Article  CAS  PubMed  Google Scholar 

  25. Hasuko M, Shiomi R, Takahashi Y, Motoba K, Hirano H, Tuboi R, Inagaki K. Affinity of luliconazole for human nail derived keratin. Med Mycol J. 2017;58(4):J113-119. https://doi.org/10.3314/mmj.17-00009.

    Article  CAS  PubMed  Google Scholar 

  26. Shimamura T, Miyamae A, Imai A, Hirayanagi K, Iwanaga T, Kubota N, Shibuya K. Comparison of characteristics of two topical therapeutic agents for onychomycosis. Med Mycol J. 2016;57(4):J141-147. https://doi.org/10.3314/mmj.16-00020.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

YN and TY conceived and designed the experiments. YN and MM performed the experiments. YN analyzed the data. YN wrote the manuscript.

Corresponding author

Correspondence to Yayoi Nishiyama.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Teikyo University (May 16, 2018, No.18–023).

Additional information

Handling Editor: Rui Kano.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, Y., Maeda, M. & Yamada, T. Effect of Topical Antifungal Luliconazole on Hyphal Morphology of Trichophyton mentagrophytes Grown on in vitro Onychomycosis Model. Mycopathologia 187, 491–496 (2022). https://doi.org/10.1007/s11046-022-00661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-022-00661-6

Keywords

Navigation