Skip to main content
Log in

Molecular analysis of Candida glabrata clinical isolates

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Candida glabrata is an important human pathogen, and an understanding of the genetic relatedness of its clinical isolates is essential for the prevention and control of fungal infections. In this study, we determined the relatedness of 38 Candida glabrata clinical isolates originating from two teaching hospitals in Slovakia. The 14 different genotypes were found by using microsatellite marker analysis (RPM2, MTI and Cg6) and DNA sequencing for analysis of the entire ERG11 gene. Subsequent sequencing of amplified DNA fragments of the PDR1, NMT1, TRP1 and URA3 loci in ten selected clinical isolates revealed identical DNA sequence profiles in five of them. They displayed the same microsatellite marker sizes and contained the same H576Y amino acid substitution recently described in the Pdr1p multidrug resistance transcription factor responsible for azole resistance. These results demonstrate the genetic diversity of C. glabrata clinical isolates in our hospitals and indicate a common clonal origin of some drug resistant ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Pfaller MA, Messer SA, Hollis RJ, et al. Trends in species distribution and susceptibility to fluconazole among blood stream isolates of Candida species in the United States. Diagn Microbiol Infect Dis. 1999;33:217–22.

    Article  CAS  PubMed  Google Scholar 

  2. Diekema DJ, Messer SA, Brueggemann AB, et al. Epidemiology of candidemia: 3-year results from the emerging infections and the epidemiology of Iowa organisms study. J Clin Microbiol. 2002;40:1298–302.

    Article  CAS  PubMed  Google Scholar 

  3. Tortorano AM, Peman J, Bernhardt H, et al. Epidemiology of candidaemia in Europe: results of 28 month European confederation of medical mycology (ECMM) hospital based surveillance study. Eur J Clin Microbiol Infect Dis. 2004;23:317–22.

    Article  CAS  PubMed  Google Scholar 

  4. Sobel JD, Chain W. Treatment of Torulopsis glabrata vaginitis: retrospective review of boric acid therapy. Clin Infect Dis. 1997;24:649–52.

    CAS  PubMed  Google Scholar 

  5. Sobel JD, Wiesenfeld HC, Martens M, et al. Maintenance fluconazole therapy for recurrent vulvovaginal candidiasis. N Engl J Med. 2004;351:876–83.

    Article  CAS  PubMed  Google Scholar 

  6. Sojakova M, Liptajova D, Borovsky M, Subik J. Fluconazole and itraconazole susceptibility of vaginal isolates from Slovakia. Mycopathologia. 2004;157:163–9.

    Article  CAS  PubMed  Google Scholar 

  7. Bialkova A, Subik J. Biology of the pathogenic yeast Candida glabrata. Folia Microbiol. 2006;51:3–20.

    Article  CAS  Google Scholar 

  8. Kaur R, Domerque E, Zupancic ML, Cormack BP. A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol. 2005;8:378–84.

    Article  CAS  PubMed  Google Scholar 

  9. Sanglard D. Genomic view on antifungal resistance mechanisms among yeast and fungal pathogens. In: d‘Enfert Ch, Hube B, editors. Candida: comparative and functional genomics. Norfolk: Caister Academic Press; 2007. p. 359–82.

    Google Scholar 

  10. Berila N, Borecka S, Dzugasova V, Bojnansky J, Subik J. Mutations in CgPDR1 and CgERG11 genes in azole-resistant Candida glabrata clinical isolates from Slovakia. Int J Antimicrob Agents. 2009;33:574–8.

    Article  CAS  PubMed  Google Scholar 

  11. Dassanayake RS, Samaranayake LP. Amplification-based nucleic acid scanning techniques to assess genetic polymorphism in Candida. Crit Rev Microbiol. 2003;29:1–24.

    Article  CAS  PubMed  Google Scholar 

  12. Abbes S, Amouri I, Sellami H, Sellami A, Makni F, Ayadi A. A review of molecular techniques to type Candida glabrata isolates. Mycoses. 2010. doi:10.1111/j.1439-0507.2009.01753.x.

    Google Scholar 

  13. Dodgson AR, Pujol C, Denning DW, Soll DR, Fox AJ. Multilocus sequence typing of Candida glabrata reveals geographically enriched clades. J Clin Microbiol. 2003;41:5709–17.

    Article  CAS  PubMed  Google Scholar 

  14. Lin CY, Chen YC, Lo HJ, Chen KW, Li SY. Assessment of Candida glabrata strain relatedness by pulsed-field gel electrophoresis and multilocus sequence typing. J Clin Microbiol. 2007;45:2452–9.

    Article  CAS  PubMed  Google Scholar 

  15. Shin JH, Chae MJ, Song JW, et al. Changes in karyotype and azole susceptibility of sequential bloodstream isolates from patients with Candida glabrata candidemia. J Clin Microbiol. 2007;45:2385–91.

    Article  CAS  PubMed  Google Scholar 

  16. Foulet F, Nicolas N, Eloy O, et al. Microsatellite marker analysis as a typing system of Candida glabrata. J Clin Microbiol. 2005;43:4574–9.

    Article  CAS  PubMed  Google Scholar 

  17. Grenouilllet F, Millon L, Bart JM, et al. Multiple-locus variable-number tandem-repeat analysis for rapid typing of Candida glabrata. J Clin Microbiol. 2007;45:3781–4.

    Article  Google Scholar 

  18. Xu J, Ramos A, Vilgalys R, Mitchel TG. Clonal and spontaneous origin of fluconazole resistance in Candida albicans. J Clin Microbiol. 2000;38:1214–20.

    CAS  PubMed  Google Scholar 

  19. Cernicka J, Subik J. Resistance mechanisms in fluconazole-resistant Candida albicans isolates from vaginal candidiasis. Int J Antimicrob Agents. 2006;27:403–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ferrari S, Ischer F, Calabrese D, Posteraro B, Sanguinetti M, Fadda G, et al. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog. 2009;5(1):e1000268.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank H. Drahovska for help with BioNumerics software and D. Hanson for careful reading of the manuscript. This work was supported by grants from the Slovak Research and Developmental Agency (LPP-0022-06, LPP-0011-07, VVCE-0064-07) and the Slovak Grant Agency of Science (VEGA 1/0001/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Subik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berila, N., Subik, J. Molecular analysis of Candida glabrata clinical isolates. Mycopathologia 170, 99–105 (2010). https://doi.org/10.1007/s11046-010-9298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-010-9298-1

Keywords

Navigation