Skip to main content
Log in

Low bit-rate SNR scalable video coding based on overcomplete dictionary learning and sparse representation

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In the current decade, scalability has been developed in video coding (VC) schemes to reply end-user demands and heterogeneity of networks. In this paper, a low bit-rate signal-to-noise ratio (SNR) scalable VC based on dictionary learning (DL) and sparse representation is proposed. A notable feature of SNR scalability compared to spatial and temporal versions is that there are not any limitations in the number of enhancement layers, making it more applicable to adapt to different conditions. In this research, unlike traditional VC in which the discrete cosine transform (DCT) coefficients of video signals are quantized to obtain different SNR qualities, sparse codes are applied. Sparse coding is done over trained overcomplete dictionaries, for which three different DL algorithms, namely MOD, K-SVD, and RLS-DLA, are utilized and compared. The dictionaries are trained over the DCT domain of general natural images, to achieve higher compression and prevent blocking artifacts. The results of the proposed method are compared with non-scalable coding based on DL, and scalable and non-scalable coding schemes based on complete DCT dictionary employed in traditional VC standards such as MPEG.X and H.26X. The results show that, although video scalability naturally decreases the quality compared to non-scalable coding, the proposed scheme presents superior subjective and rate–distortion performance compared to non-scalable and scalable VC based on the traditional DCT quantization. Moreover, among the three DL methods applied, RLS-DLA achieves superior results both for non-scalable and scalable VC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Internet Protocol Television.

  2. Hyper Text Transfer Protocol.

  3. Group of Pictures.

  4. Joint Scalable Video Model (JSVM) reference software for SVC. Online Available: CVS server garcon.ient.rwth-aachen.de.

References

  • Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing over complete dictionaries for sparse representation. IEEE Transactions on Signal Processing,54(11), 4311–4322.

    Article  Google Scholar 

  • Bryt, O., & Elad, M. (2008). Compression of facial images using the K-SVD algorithm. Journal of Visual Communication and Image Representation,19(4), 270–283.

    Article  Google Scholar 

  • Choupani, R., Wong, S., & Tolun, M. (2015). Hierarchical SNR scalable video coding with adaptive quantization for reduced drift error. In International conference on computer vision theory and applications (VISAPP) (pp. 117–123).

  • Eldar, Y. C., & Kutyniok, G. (2012). Compressed sensing, theory and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Engan, K., Skretting, K., & Husøy, J. H. (2007). Family of iterative LS-based dictionary learning algorithms ILS-DLA for sparse signal representation. Digital Signal Processing,22(1), 32–49.

    Article  Google Scholar 

  • Ghandi, M. M., & Ghanbari, M. (2006). Error concealment for SNR scalable video coding. Signal Processing: Image Communication,21(2), 91–99.

    Google Scholar 

  • Ghareeb, M., Ksentini, A., & Viho, C. (2011). A multipath video streaming approach for SNR scalable video coding (SVC) in overlay networks. In IEEE consumer communications and networking conference (CCNC) (pp. 605–610).

  • Irannejad, M., & Mahdavi-Nasab, H. (2018). Block matching video compression based on sparse representation and dictionary learning. Circuits, Systems, and Signal Processing,37(8), 3537–3557.

    Article  MathSciNet  Google Scholar 

  • Ji, X. X., & Zhang, G. (2017). An adaptive SAR image compression method. Computers & Electrical Engineering,62, 473–484.

    Article  Google Scholar 

  • Kim, T. J., Hong, J. E., & Suh, J. W. (2011). Fast mode decision for combined scalable video coding based on the block complexity function. IEEE Transactions on Consumer Electronics,57(1), 247–252.

    Article  Google Scholar 

  • Koutsonikolas, D., Hu, Y., Wang, C., Comer, M., & Mohamed, A. (2011). Efficient online wifi delivery of layered coding media using inter layer network coding. In International conference on distributed computing systems (ICDCS) (pp. 237–247).

  • Leuvun, S. V., Cock, J. D., Cantos, R. G., Martinez, J. L., & Walle, R. V. D. (2011). Generic techniques to reduce SVC enhancement layer encoding complexity. IEEE Transactions on Consumer Electronics,57(2), 827–832.

    Article  Google Scholar 

  • Lewicki, M. S., & Sejnowski, T. J. (2000). Learning overcomplete representations. Neural Computation,12(2), 337–365.

    Article  Google Scholar 

  • Nejati, M., Samavi, S., Karimi, N., Soroushmehr, S. M. R., & Najarian, K. (2016). Boosted dictionary learning for image compression. IEEE Transactions on Image Processing,25(10), 4900–4915.

    Article  MathSciNet  Google Scholar 

  • Ostovari, P., & Wu, J. (2016). Robust wireless transmission of scalable coded videos using two-dimensional network coding. Computer Networks,95, 115–126.

    Article  Google Scholar 

  • Richardson, I. E. (2010). The H.264 advanced video compression standard (2nd ed.). Hoboken: Wiley.

    Book  Google Scholar 

  • Sadeghi, M., Babaie-Zadeh, M., & Jutten, C. (2013). Dictionary learning for sparse representation: A novel approach. IEEE Signal Processing Letters,20(12), 1195–1198.

    Article  Google Scholar 

  • Sanchez, Y., Schierl, T., Hellge, C., Wiegand, T., Hong, D., Vleeschauwer, D. D., et al. (2012). Efficient http based streaming using scalable video coding. Signal Processing: Image Communication,27(4), 329–342.

    Google Scholar 

  • Skretting, K. (2018). Dictionary learning tools for Matlab. University of Stavanger. http://www.ux.uis.no/~karlsk/dle/. Accessed July 2017.

  • Skretting, K., & Engan, D. K. (2011). Image compression using learned dictionaries by RLS-DLA and compared with K-SVD. In Proceeding on IEEE ICASSP (pp. 1517–1520).

  • Sullivan, G. J., Ohm, J., Han, W. J., & Wiegand, T. (2012). Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology,22(12), 1649–1668.

    Article  Google Scholar 

  • Sun, Y., Xu, M., Tao, X., & Lu, J. (2014). Online dictionary learning based intra-frame video coding. Wireless Personal Communications,74(4), 1281–1295.

    Article  Google Scholar 

  • Taheri, A. M., & Mahdavi-Nasab, H. (2018). Sparse representation based facial image compression via multiple dictionaries and separated ROI. Multimedia Tools and Applications, 77(23), 31095–31114.

    Article  Google Scholar 

  • Tsai, C. Y., & Hang, H. M. (2010). A rate–distortion analysis on motion prediction efficiency and mode decision for scalable wavelet video coding. Journal of Visual Communication and Image Representation,21(8), 917–929.

    Article  Google Scholar 

  • Wang, H., Xiao, S., & Kuo, C. (2010). Robust video multicast with joint network coding and video inter leaving. Journal of Visual Communication and Image Representation,21(2), 77–88.

    Article  Google Scholar 

  • Wang, H., Xiao, S., & Kuo, C. (2011). Random linear network coding with ladder-shaped global coding matrix for robust video transmission. Journal of Visual Communication and Image Representation,22(3), 203–212.

    Article  Google Scholar 

  • Wu, J. S., Tai, K. H., Li, G. L., Chen, M. J., & Tang, Y. H. (2015). Effective computation-aware algorithm by inter-layer motion analysis for scalable video coding. Journal of Visual Communication and Image Representation,32(5), 107–119.

    Article  Google Scholar 

  • Xie, J., & Chia, L. T. (2005). Enhancement layer rate control for high bit rate SNR scalable video coding. Journal of Visual Communication and Image Representation,16(2), 159–179.

    Article  Google Scholar 

  • Xiong, H., Pan, Z., Ye, X., & Chen, C. W. (2013). Sparse spatio-temporal representation with adaptive regularized dictionary learning for low bit-rate video coding. IEEE Transactions on Circuits and Systems for Video Technology,23(4), 710–728.

    Article  Google Scholar 

  • Yaghoobi, M., Daudet, L., & Davies, M. E. (2009). Parametric dictionary design for sparse coding. IEEE Transactions on Signal Processing,57(12), 4800–4810.

    Article  MathSciNet  Google Scholar 

  • Zhu, J. Y., Wang, Z. Y., Zhong, R., & Qu, S. M. (2015). Dictionary based surveillance image compression. Journal of Visual Communication and Image Representation,31(8), 225–230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homayoun Mahdavi-Nasab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irannejad, M., Mahdavi-Nasab, H. Low bit-rate SNR scalable video coding based on overcomplete dictionary learning and sparse representation. Multidim Syst Sign Process 31, 465–489 (2020). https://doi.org/10.1007/s11045-019-00671-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-019-00671-6

Keywords

Navigation