Skip to main content
Log in

Physics-based model of a stroke-dependent shock absorber

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Multibody system simulation has become a mature analysis tool as part of industrial suspension design processes. However, when applied to a specific problem, it turns out that not kinematics or elasto-kinematics is the major issue, but force elements like shock absorbers. Classical linear or nonlinear characteristics are no longer applicable to modern stroke- or frequency-dependent shock absorbers, especially regarding transient, non-stationary analyses. Therefore, more emphasis has to be put on understanding and modeling this kind of elements. The paper will show a systematic modeling and identification process for a stroke-dependent, single tube shock absorber starting from basic physics laws for gas dynamics and hydraulics. Valve characteristics being the determining element of damper performance are modeled by rather flexible Hermite splines which are identified on a test rig in a two-step procedure. Simulations of VDA (Association of German Automotive Industry) tests and randomly excited vibrations of the identified damper model show high agreement with experimental results, and thus the high potential of the proposed modeling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ajala, O., Bestle, D., Rauh, J., Rieger, K.-J.: Two-degree-of-freedom control approach for an active suspension system. In: Eberhard, P., Ziegler, P. (eds.) Proc. of IMSD 2012—2nd Int. Conf. on Multibody System Dynamics, Stuttgart (2012)

    Google Scholar 

  2. Ajala, O., Bestle, D., Rauh, J., Ammon, D.: Zero-phase filtering control of an active suspension system with preview. In: Proc. of 11th Int. Symp. on Advanced Vehicle Control, Seoul (2012)

    Google Scholar 

  3. Polach, P., Hajzman, M.: Design of characteristics of air-pressure-controlled hydraulic shock absorbers in an intercity bus. Multibody Syst. Dyn. 46, 73–90 (2008)

    Article  Google Scholar 

  4. Rakheja, S., Su, H., Sankar, T.S.: Analysis of a passive sequential hydraulic damper for vehicle suspension. Veh. Syst. Dyn. 19, 289–312 (1990)

    Article  Google Scholar 

  5. Scheibe, F., Smith, M.C.: Analytical solutions for optimal ride comfort and tyre grip for passive vehicle suspensions. Veh. Syst. Dyn. 47, 1229–1252 (2009)

    Article  Google Scholar 

  6. Michalski, R., Tietke, M., Krüger, G., Scheyhing, F., Steller, G., Klingel, R.: Fahrwerk – Neudefinition der Synthese von Komfort und Agilität. ATZ, Sonderausgabe 4, 82–101 (2007)

    Google Scholar 

  7. Bestle, D., Funke, T.: Physically motivated modeling and identification of advanced vehicle shock absorbers. In: Eberhard, P., Ziegler, P. (eds.) Proc. of IMSD 2012—2nd Int. Conf. on Multibody System Dynamics, Stuttgart (2012)

    Google Scholar 

  8. Djukic, D., Bestle, D.: Optimization of damping characteristics for improved vehicle ride and handling. In: Proc. of 19th Int. Conference on Computer Methods in Mechanics, Warsaw (2011)

    Google Scholar 

  9. VDA – Verband der Automobilindustrie. URL: http://www.vda.de/en/index.html

  10. Reimpell, J., Stoll, H.: Fahrwerkstechnik – Stoß- und Schwingungsdämpfer. Vogel, Würzburg (1989)

    Google Scholar 

  11. Duym, S.: Simulation tools, modelling and identification for an automotive shock absorber in the context of vehicle dynamics. Veh. Syst. Dyn. 33, 261–285 (2000)

    Article  Google Scholar 

  12. Funke, T., Bestle, D.: Entwicklung eines physikalischen Dämpfermodells zur Analyse und Optimierung des Fahrverhaltens. In: Gühmann, C., Wolter, T.-M. (eds.) Simulation und Test für die Automobilelektronik III, pp. 415–427. Expert Verlag, Berlin (2010)

    Google Scholar 

  13. MATLAB—Language of Technical Computing, Version R2009b, User Guide—Mathematics. MathWorks (2009)

  14. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  15. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17, 238–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. MATLAB Optimization Toolbox, User’s Guide. Natick, MathWorks (2008)

  17. Schiehlen, W. (ed.): Multibody Systems Handbook. Springer, Berlin (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Funke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funke, T., Bestle, D. Physics-based model of a stroke-dependent shock absorber. Multibody Syst Dyn 30, 221–232 (2013). https://doi.org/10.1007/s11044-013-9348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9348-9

Keywords

Navigation