Skip to main content
Log in

Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a new method to estimate both musculo-tendon forces and detailed joint reactions during gait, using an original 3D lower limb musculo-skeletal model with 5 degrees of freedom: spherical joint at the hip and parallel mechanisms at both knee and ankle. This can be realized by employing a typical set of natural coordinates into a three-steps process. First, the kinematic constraints associated with the kinematic models are applied through a global optimization method on the marker-based kinematics. Consistent time derivatives of the positions are computed by projecting the velocities and accelerations in the null space of the Jacobian matrix. Then, a Lagrangian formulation of the equations of motion is proposed, introducing Lagrange multipliers and allowing a straight access to the musculo-tendon forces. Thanks to a parameter reduction procedure, the Lagrange multipliers are cancelled and the musculo-tendon forces can be computed directly, using a static optimization algorithm with a typical cost function. Finally, the equations of motion are rewritten with the Lagrange multipliers to compute detailed joint reactions (since they represent directly joint contact and ligament forces). Results show that the estimated musculo-tendon forces are consistent with measured EMG signals. Moreover, the use of “anatomically” consistent kinematic models allows computing total joint reaction at hip joint and detailed joint reactions at both knee and ankle joints that are temporally consistent with the forces measured on the subject (i.e., knee joint contact forces) and the forces published in the literature (i.e., hip joint contact forces). Next step will be to optimize simultaneously musculo-tendon forces and joint reactions to investigate and understand the interactions acting into the musculo-skeletal system during gait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alonso, F., Cuadrado, J., Lugris, U., Pintado, P.: A compact smoothing-differentiation and projection approach for the kinematic data consistency of biomechanical systems. Multibody Syst. Dyn. 24(1), 67–80 (2010)

    Article  MATH  Google Scholar 

  2. Andersen, M., Damsgaard, M., Rasmussen, J.: Kinematic analysis of over-determinate biomechanical systems. Comput. Methods Biomech. Biomed. Eng. 12(4), 371–384 (2009)

    Article  Google Scholar 

  3. Arnold, E., Ward, S., Lieber, R., Delp, S.: A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38(2), 269–279 (2010)

    Article  Google Scholar 

  4. Ausejo, S., Suescun, A., Celigeta, J.: An optimization method for overdetermined kinematic problems formulated with natural coordinates. Multibody System Dynamics, 1–14 (2011)

  5. Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Cuadrado, J., Alonso, F., Rohlmann, A., Strauss, J., Duda, G.: Hip contact forces and gait patterns from routine activities. J. Biomech. 34(7), 859–871 (2001)

    Article  Google Scholar 

  6. Blajer, W., Czaplicki, A., Dziewiecki, K., Mazur, Z.: Influence of selected modeling and computational issues on muscle force estimates. Multibody Syst. Dyn. 24, 473–492 (2010)

    Article  MATH  Google Scholar 

  7. Charlton, I., Tate, P., Smyth, P., Roren, L.: Repeatability of an optimised lower body model. Gait Posture 20(2), 213–221 (2004)

    Article  Google Scholar 

  8. Cleather, D., Bull, A.: An optimization-based simultaneous approach to the determination of muscular, ligamentous, and joint contact forces provides insight into musculoligamentous interaction. Ann. Biomed. Eng. 39(7), 1925–1934 (2011)

    Article  Google Scholar 

  9. Collins, J.: The redundant nature of locomotor optimization laws. J. Biomech. 28(3), 251–267 (1995)

    Article  Google Scholar 

  10. Collins, J., O’Connor, J.: Muscle-ligament interactions at hte knee during walking. Proc. Inst. Mech. Eng., H J. Eng. Med. 205(1), 11–18 (1991)

    Article  Google Scholar 

  11. Crowninshield, R., Brand, R.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14, 793–801 (1981)

    Article  Google Scholar 

  12. De Luca, C., Gilmore, L., Kuznetsov, M., Roy, S.: Filtering the surface emg signal: Movement artifact and baseline noise contamination. J. Biomech. 43(8), 1573–1579 (2010)

    Article  Google Scholar 

  13. De Luca, S.: The use of surface electromyography in biomechanics. J. Appl. Biomech. 13, 135–163 (1997)

    Google Scholar 

  14. Delp, S., Loan, J., Hoy, M., Zajac, F., Topp, E., Rosen, J.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37(8), 757–767 (1990)

    Article  Google Scholar 

  15. Di Gregorio, R., Parenti-Castelli, V., O’Connor, J., Leardini, A.: Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Med. Biol. Eng. Comput. 45(3), 305–313 (2007)

    Article  Google Scholar 

  16. D’Lima, D., Patil, S., Steklov, N., Slamin, J., Colwell, C.: Tibial forces measured in vivo after total knee arthroplasty. J. Arthroplast. 21(2), 255–262 (2006)

    Article  Google Scholar 

  17. Dumas, R., Cheze, L.: 3d inverse dynamics in non-orthonormal segment coordinate system. Med. Biol. Eng. Comput. 45(3), 315–322 (2007)

    Article  Google Scholar 

  18. Dumas, R., Cheze, L., Verriest, J.: Adjustments to McConville et al. and Young et al. body segment inertial parameters. J. Biomech. 40(3), 543–553 (2007)

    Article  Google Scholar 

  19. Dumas, R., Moissenet, F., Gasparutto, X., Cheze, L.: Influence of the joint models on the lower limb musculo-tendon and contact forces during gait. Proc. Inst. Mech. Eng., H, J. Eng. Med. (2011). doi:10.1177/0954411911431396

  20. Duprey, S., Cheze, L., Dumas, R.: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. J. Biomech. 43(14), 2858–2862 (2010)

    Article  Google Scholar 

  21. Ehrig, R., Taylor, W., Duda, G., Heller, M.: A survey of formal methods for determining the centre of rotation of ball joints. J. Biomech. 39(15), 2798–2809 (2006)

    Article  Google Scholar 

  22. Erdemir, A., McLean, S., Herzog, W., van den Bogert, A.: Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22(2), 131–154 (2007)

    Article  Google Scholar 

  23. Feikes, J., O’Connor, J., Zavatsky, A.: A constraint-based approach to modelling the mobility of the human knee joint. J. Biomech. 36(1), 125–129 (2003)

    Article  Google Scholar 

  24. Fregly, B., Besier, T., Lloyd, D., Delp, S., Banks, S., Pandy, M., DLima, D.: Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. (2011, conditionally accepted)

  25. Garcia de Jalon, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge. Springer, New-York (1994)

    Book  Google Scholar 

  26. Kim, H., Fernandez, J., Akbarshahi, M., Walter, J., Fregly, B., Pandy, M.: Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant. J. Orthop. Res. 27, 1326–1331 (2009)

    Article  Google Scholar 

  27. Koh, B.I., Reinbolt, J., George, A., Haftka, R., Fregly, B.: Limitations of parallel global optimization for large-scale human movement problems. Med. Eng. Phys. 31(5), 515–521 (2009)

    Article  Google Scholar 

  28. Leardini, A., Chiari, L., Della Croce, U., Cappozzo, A.: Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21(2), 212–225 (2005)

    Article  Google Scholar 

  29. Lenaerts, G., De Groote, F., Demeulenaere, B., Mulier, M., Van der Perre, G., Spaepen, A., Jonkers, I.: Subject-specific hip geometry affects predicted hip joint contact forces during gait. J. Biomech. 41(6), 1243–1252 (2008)

    Article  Google Scholar 

  30. Lin, Y., Walter, J., Banks, S., Pandy, M., Fregly, B.: Simultaneous prediction of muscle and contact forces in the knee during gait. J. Biomech. 22, 945–952 (2010)

    Article  Google Scholar 

  31. Lu, B., O’Connor, J.: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32(2), 129–134 (1999)

    Article  Google Scholar 

  32. Moissenet, F., Cheze, L., Dumas, R.: Musculo-tendon forces prediction by static optimization: a comparative study between three methods. J. Biomech. Eng. (2011, under review)

  33. Pandy, M., Andriacchi, T.: Muscle and joint function in human locomotion. Annu. Rev. Biomed. Eng. 12, 401–433 (2010)

    Article  Google Scholar 

  34. Raikova, R.: Investigation of the influence of the elbow joint reaction on the predicted muscle forces using different optimization functions. J. Musculoskelet. Res. 1(1), 31–43 (2009)

    Article  Google Scholar 

  35. Reed, M., Manary, M., Schneider, L.: Methods for Measuring and Representing Automobile Occupant Posture. Society of Automobile Engineers, Warrendale (1999)

    Book  Google Scholar 

  36. Reinbolt, J., Schutte, J., Fregly, B., Koh, B., Haftka, R., George, A., Mitchell, K.: Determination of patient-specific multi-joint kinematic models through two-level optimization. J. Biomech. 38(3), 621–626 (2005)

    Article  Google Scholar 

  37. Seireg, A., Arvikar, R.: The prediction of muscular load sharing and joint forces in the lower extremities during walking. J. Biomech. 8(2), 89–102 (1975)

    Article  Google Scholar 

  38. Shelburne, K., Pandy, M., Anderson, F., Torry, M.: Anterior-Cruciate Ligament Forces in the Intact Knee During Normal Gait. American Society of Biomechanics, Calgary (2002)

    Google Scholar 

  39. Shelburne, K., Torry, M., Pandy, M.: Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J. Orthop. Res. 24(10), 1983–1990 (2006)

    Article  Google Scholar 

  40. Silva, M., Ambrosio, J.: Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody Syst. Dyn. 8(2), 219–239 (2002)

    Article  MATH  Google Scholar 

  41. Stansfield, B., Nicol, A., Paul, J., Kelly, I., Graichen, F., Bergmann, G.: Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb. J. Biomech. 36(7), 929–936 (2003)

    Article  Google Scholar 

  42. Terrier, A., Aeberhard, M., Michellod, Y., Mullhaupt, P., Gillet, D., Farron, A., Pioletti, D.: A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization. Med. Eng. Phys. 32(9), 1050–1056 (2010)

    Article  Google Scholar 

  43. Wilson, D., Feikes, J., O’Connor, J.: Ligament and articular contact guide passive knee flexion. J. Biomech. 31, 1127–1136 (1998)

    Article  Google Scholar 

  44. Zhao, D., Banks, S., D’Lima, D., Colwell, D., Fregly, B.: In vivo medial and lateral tibial loads during dynamic and high flexion activities. J. Orthop. Res. 25, 593–602 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Moissenet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moissenet, F., Chèze, L. & Dumas, R. Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions. Multibody Syst Dyn 28, 125–141 (2012). https://doi.org/10.1007/s11044-011-9286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9286-3

Keywords

Navigation