Abstract
In this paper, the authors present the description and an application of the theory of dynamic splines for the modeling of very flexible beams in multibody systems. The use of spline formalism reveals an alternative method for the description of continuum flexibility by using discrete parameters. The proposed approach is discussed in general terms and a specific example is presented and compared to nonlinear finite element simulation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)
Valembrois, R.E., Fisette, P., Samin, J.C.: Comparison of various techniques for modeling flexible beams in multibody dynamics. Nonlinear Dyn. 12, 367–397 (1997)
Shabana, A.A.: Dynamics of Multibody Systems, 2nd edn. Wiley, New York (1998)
Shabana, A.A.: Dynamic analysis of large scale inertia-variant flexible systems. PhD thesis, The University of Iowa (1982)
Cardona, A.: Superelements modeling in flexible multibody dynamics. Multibody Syst. Dyn. 4, 245–266 (2000)
Oliviers, M., Campion, G., Samin, J.C.: Nonlinear dynamic model of a system of flexible bodies using augmented bodies. Multibody Syst. Dyn. 2, 25–48 (1998)
Kim, S., Haug, E.: Selection of deformation modes for flexible multibody dynamics. Mech. Struct. Mach. 18, 565–586 (1990)
Theodore, R., Ghosal, A.: Comparison of the assumed modes and finite element models for flexible multilink manipulators. Int. J. Robot. Res. 14(2), 91–111 (1995)
Géradin, M., Cardona, A.: Flexible Multibody Dynamics—A Finite Element Approach. Wiley, New York (2001)
Gerstmayr, J., Schöberl, J.: A 3D finite element method for flexible multibody systems. Multibody Syst. Dyn. 15, 309–324 (2006)
Von Dombrowski, S.: Analysis of large flexible body deformation in multibody systems using absolute coordinates. Multibody Syst. Dyn. 8, 409–432 (2002)
Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3), 339–348 (1997)
Kübler, L., Eberhard, P., Geisler, J.: Flexible multibody systems with large deformations and nonlinear structural damping using absolute nodal coordinates. Nonlinear Dyn. 34, 31–52 (2003)
Berzeri, M., Shabana, A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vib. 235(4), 539–565 (2000)
Sanborn, G.G., Shabana, A.A.: On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 22, 181–197 (2009)
Liu, Z.Y., Hong, J.Z., Liu, J.Y.: Finite element formulation for dynamics of planar flexible multi-beam system. Multibody Syst. Dyn. 22, 1–26 (2009)
Mayo, J.M., Garçia-Vallejo, D., Dominguez, J.: Study of the geometric stiffening effect: comparison of different formulations. Multibody Syst. Dyn. 11(4), 321–341 (2004)
Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions—the plane case. J. Appl. Mech. 53, 849–863 (1986)
Ambrósio, J.A.C.: Geometric and material nonlinear deformations in flexible multibody systems. In: Ambrosio, J.A.C. Kleiber, M. (eds.) Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion, Nato Science Series. Iowa State University Press, Ames (2001)
Hsiao, K.M., Yang, R.T.: A co-rotational formulation for nonlinear dynamic analysis of curved Euler beam. Comput. Struct. 54, 1091–1097 (1995)
Wu, S.C., Haug, E.J.: Geometric non-linear substructuring for dynamics of flexible mechanical systems. Int. J. Numer. Methods Eng. 26, 2211–2276 (1988)
Chen, Z.Q., Agar, T.J.A.: Geometric nonlinear analysis of flexible spatial beams structures. Comput. Struct. 49, 1083–1094 (1993)
Sharf, I.: Geometrical non-linear beam element for dynamics simulation of multibody systems. Int. J. Numer. Methods Eng. 39, 763–786 (1996)
Farin, G.: Curves and Surfaces for CAGD, 5th edn. Morgan Kaufmann, San Francisco (2002)
Qin, H., Terzopoulos, D.: D-NURBS: a physics-based framework for geometric design. IEEE Trans. Vis. Comput. Graph. 2(1), 85–96 (1996)
Lenoir, J., Cotin, S., Duriez, C., Neumann, P.: Interactive physically-based simulation of catheter and guidewire. Computer and Graphics 30(3), 417–423 (2006)
Lenoir, J., Grisoni, L., Meseure, P., Chaillou, C.: Adaptive resolution of 1D mechanical B-spline. In: Graphite. Dunedin (New Zealand), pp. 395–403 (2005)
Theetten, A., Grisoni, L., Andriot, C., Barsky, B.: Geometrically exact dynamic splines. Comput. Aided Des. 40, 35–48 (2008)
Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318, 461–487 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Valentini, P.P., Pennestrì, E. Modeling elastic beams using dynamic splines. Multibody Syst Dyn 25, 271–284 (2011). https://doi.org/10.1007/s11044-010-9232-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11044-010-9232-9