Skip to main content
Log in

Multiphysics modeling and optimization of mechatronic multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Modeling mechatronic multibody systems requires the same type of methodology as for designing and prototyping mechatronic devices: a unified and integrated engineering approach. Various formulations are currently proposed to deal with multiphysics modeling, e.g., graph theories, equational approaches, co-simulation techniques. Recent works have pointed out their relative advantages and drawbacks, depending on the application to deal with: model size, model complexity, degree of coupling, frequency range, etc. This paper is the result of a close collaboration between three laboratories, and aims at showing that for “non-academic” mechatronic applications (i.e., issuing from real industrial issues), multibody dynamics formulations can be generalized to mechatronic systems, for the model generation as well as for the numerical analysis phases. Model portability being also an important aspect of the work, they must be easily interfaced with control design and optimization programs. A global “demonstrator”, based on an industrial case, is discussed: multiphysics modeling and mathematical optimization are carried out to illustrate the consistency and the efficiency of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gear, C.W., Wells, D.R.: Multirate linear multistep methods. BIT 24, 482–502 (1984)

    Article  MathSciNet  Google Scholar 

  2. Arnold, M.: Numerically stable modular time integration of multiphysical systems. In: Bathe, K.J. (ed.) Proceedings of the First MIT Conference on Computational Fluid and Solid Mechanics, Cambridge, MA, June 2001, pp. 1062–1064. Elsevier, Amsterdam (2001)

    Google Scholar 

  3. Rükgauer, A., Schiehlen, W.: Simulation of modular dynamic systems. Comput. Struct. 46, 535–542 (1998)

    Google Scholar 

  4. Veitl, A., Gordon, T., Van De Sand, A., Howell, M., Valásek, M., Vaculin, O., Steinbauer, P.: Methodologies for coupling simulation models and codes in mechatronic system analysis and design. Veh. Syst. Dyn. 33, 231–243 (1999)

    Google Scholar 

  5. Valásek, M., Breedveld, P., Sika, Z., Vampola, T.: Software tools for mechatronic vehicles: Design through modelling and simulation. Veh. Sys. Dyn. 33, 214–230 (1999)

    Google Scholar 

  6. Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput. Model. Dyn. Syst. 6(2), 93–113 (2000)

    Article  MATH  Google Scholar 

  7. Da Silva, M., Brüls, O., Paijmans, B., Desmet, W., Van Brussel, H.: Concurrent simulation of mechatronic systems with variable mechanical configuration. In: Proc. of ISMA 2006, Leuven, Belgium, September 2006

  8. Van Brussel, H.: Mechatronics—a powerful concurrent engineering framework. IEEE/ASME Trans. Mechatron. 1(2), 127–136 (1996)

    Article  MathSciNet  Google Scholar 

  9. Elmqvist, H., Mattson, S.E., Otter, M.: Modelica—the new object-oriented modeling language. In: Proc. of the 12th European Simulation Multiconference (ESM’98), June 1998

  10. Tiller, M.M.: Introduction to Physical Modeling with Modelica. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  11. Koenig, H.E., Tokad, Y., Kesavan, H.K., Hedges, H.G.: Analysis of Discrete Physical Systems. McGraw–Hill, New York (1967)

    Google Scholar 

  12. Sass, L.: Symbolic modeling of electromechanical multibody systems. Ph.D. thesis, Université Catholique de Louvain (2004), available at http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-01082004-172924/

  13. Paynter, H.: Analysis and Design of Engineering Systems. MIT Press, Cambridge (1961)

    Google Scholar 

  14. Karnopp, D., Margolis, D.L., Rosenberg, R.C.: System Dynamics: Modeling and Simulation of Mechatronic Systems, 3rd edn. Wiley, New York (2000)

    Google Scholar 

  15. Bonderson, L.: Vector bond graphs applied to one-dimensional distributed systems. J. Dyn. Syst. Meas. Control 97(1), 75–82 (1975)

    Google Scholar 

  16. Ingrim, M.E., Masada, G.Y.: The extended bond-graph notation. J. Dyn. Syst. Meas. Control 113, 113–117 (1991)

    Google Scholar 

  17. Karnopp, D.: Understanding multibody dynamics using bond graph representations. J. Frankl. Inst. B 334(4), 631–642 (1997)

    Article  MathSciNet  Google Scholar 

  18. Favre, W.: Contribution à la représentation bond graph des systèmes mécaniques multicorps. PhD thesis, INSA de Lyon (1997)

  19. McPhee, J.J.: On the use of linear graph theory in multibody system dynamics. Nonlinear Dyn. 9, 73–90 (1996)

    Article  Google Scholar 

  20. McPhee, J.J.: Automatic generation of motion equations for planar mechanical systems using the new set of “branch coordinates”. Mech. Mach. Theory 33(6), 805–823 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. McPhee, J.J.: Virtual prototyping of multibody systems with linear graph theory and symbolic computing. In: Schiehlen, W., Valásek, M. (eds.) Virtual Nonlinear Multibody Systems. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 103, pp. 37–56. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  22. Scherrer, M., McPhee, J.: Dynamic modelling of electromechanical multibody systems. Multibody Syst. Dyn. 9, 87–115 (2003)

    Article  MATH  Google Scholar 

  23. Shi, P., McPhee, J.: Dynamics of flexible multibody systems using virtual work and linear graph theory. Multibody Syst. Dyn. 4, 355–381 (2000)

    Article  MATH  Google Scholar 

  24. Shi, P., McPhee, J., Heppler, G.: A deformation field for Euler–Bernoulli beams with applications to flexible multibody dynamics. Multibody Syst. Dyn. 5, 79–104 (2001)

    Article  MATH  Google Scholar 

  25. Schmitke, C., McPhee, J.: Modelling mechatronic multibody systems using symbolic subsystems models. In: Proc. of the ECCOMAS Conf. on Advances in Computational Multibody Systems, Lisbon, Portugal, July 2003

  26. Hadwitch, V., Pfeiffer, K.: The principle of virtual work in mechanical and electromechanical systems. Arch. Appl. Mech. 65, 390–400 (1995)

    Article  Google Scholar 

  27. Maisser, P., Enge, O., Freundenberg, G., Kielau, G.: Electromechanical interactions in multibody systems containing electromechanical drives. Multibody Syst. Dyn. 1(3), 281–302 (1997)

    Article  MATH  Google Scholar 

  28. Rochus, V., Rixen, D., Golinval, J.C.: Monolithic modelling of electromechanical coupling in microstructures. Int. J. Numer. Method. Eng. 65, 461–493 (2005)

    Article  MathSciNet  Google Scholar 

  29. Rochus, V.: Finite element modelling of strong electro-mechanical coupling in MEMS. PhD thesis, University of Liège (2006)

  30. Fisette, P.: Génération symbolique des equations du mouvement de systèmes multicorps et application dans le domaine ferroviaire. PhD thesis, Université Catholique de Louvain (1994)

  31. Fisette, P., Samin, J.C.: Robotran symbolic generation of multibody system dynamic equations. In: Advanced Multibody System Dynamics: Simulation and Software Tools, pp. 373–378. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  32. Samin, J.C., Fisette, P.: Symbolic Modeling of Multibody Systems. Kluwer Academic, Dordrecht (2003)

    MATH  Google Scholar 

  33. Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. ASME J. Mech. Des. 104, 247–255 (1982)

    Article  Google Scholar 

  34. Fisette, P., Péterkenne, J.M., Vaneghem, B., Samin, J.C.: A multibody loop constraints approach for modelling cam/follower devices. Nonlinear Dyn. 22, 335–359 (2000)

    Article  MATH  Google Scholar 

  35. Telteu, D., Grenier, D., Fisette, P., Labrique, F.: Modélisation et Simulation des Convertisseurs Electroniques de Puissance par Analogie avec les Systèmes Mécaniques. Rev. Int. Génie Electr. (RIGE) 3–4, 429–456 (2003)

    Google Scholar 

  36. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  37. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2nd edn. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  38. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II—Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  39. Brüls, O.: Integrated Simulation and Reduced-Order Modeling of Controlled Flexible Multibody Systems. PhD thesis, University of Liège, Belgium (2005)

  40. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Method. Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gear, C.W., Leimkuhler, B., Gupta, G.K.: Automatic integration of Euler–Lagrange equations with constraints. J. Comput. Appl. Math. 12–13, 77–90 (1985)

    Article  MathSciNet  Google Scholar 

  42. Führer, C., Leimkuhler, B.J.: Numerical solution of differential-algebraic equations for constrained mechanical motion. Numer. Math. 59, 55–69 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  43. Fisette, P., Vaneghem, B.: Numerical integration of multibody system dynamic equations using the coordinate partitioning method in an implicit Newmark scheme. Comput. Method. Appl. Mech. Eng. 135, 85–105 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  44. Yen, J.: Constrained equations of motion in multibody dynamics as odes on manifolds. SIAM J. Numer. Anal. 30, 553–568 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  45. Sass, L., McPhee, J., Schmitke, C., Fisette, P., Grenier, D.: A comparison of different methods for modelling electromechanical multibody systems. Multibody Syst. Dyn. 12(3), 209–250 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  46. Cardona, A., Klapka, I., Géradin, M.: Design of a new finite element programming environment. Eng. Comput. 11, 365–381 (1994)

    MATH  Google Scholar 

  47. Duym, S., Reybrouck, K.: Physical characterization of nonlinear shock absorber dynamics. Eur. J. Mech. Eng. 43(4), 181–188 (1998)

    Google Scholar 

  48. Lauwerys, C., Swevers, J., Sas, P.: Model free design for a semi-active suspension of a passenger car. In: Proc. of ISMA 2004, Leuven, Belgium, September 2004

  49. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. ASME J. Appl. Mech. 60, 371–375 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  50. Brüls, O., Duysinx, P., Golinval, J.-C.: A unified finite element framework for the dynamic analysis of controlled flexible mechanisms. In: Proc. of the ECCOMAS Conf. on Advances in Computational Multibody Dynamics, Madrid, Spain, June 2005

  51. Wong, J.Y.: Theory of Ground Vehicles, 3rd edn. Wiley, New York (2001)

    Google Scholar 

  52. Baumal, A.E., McPhee, J.J., Calamai, P.H.: Application of genetic algorithms to the design optimization of an active suspension system. Comput. Method. Appl. Mech. Eng. 163, 87–94 (1998)

    Article  MATH  Google Scholar 

  53. Els, P.S., Uys, P.E.: Applicability of the dynamic-Q optimization algorithm to vehicle suspension design. Math. Comput. Model. 37, 1029–1046 (2003)

    Article  MATH  Google Scholar 

  54. Collard, J.-F., Fisette, P., Duysinx, P.: Contribution to the optimization of closed-loop multibody systems: Application to parallel manipulators. Multibody Syst. Dyn. 13, 69–84 (2005)

    Article  MATH  Google Scholar 

  55. Brüls, O., Duysinx, P., Golinval, J.C.: The global modal parameterization for nonlinear model-order reduction in flexible multibody dynamics. Int. J. Numer. Methods Eng. 69, 948–977 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Samin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samin, J.C., Brüls, O., Collard, J.F. et al. Multiphysics modeling and optimization of mechatronic multibody systems. Multibody Syst Dyn 18, 345–373 (2007). https://doi.org/10.1007/s11044-007-9076-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-007-9076-0

Keywords

Navigation