Skip to main content
Log in

Comparing interconversion methods between linear viscoelastic material functions

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

A variety of methods applicable to the interconversion of static (creep) and dynamic (relaxation) functions, with regard to appropriate experimental data of various polymers is investigated and compared. The effectiveness of the selected methods was verified by a series of creep experimental data of various polymeric structures. While most of the employed methods are well established in the literature, some further modifications have been introduced for an improvement of the conversion procedure. Furthermore, a new approach is also employed, which is based on the stretched-exponential function, usually applied to represent both relaxation and retardation functions. It is seen that the examined methods produce a similar result, concerning the creep compliance function, having as a beginning storage and loss modulus experimental data. The same observation applies to the retardation spectra, pointing the fact that discrete spectra deviates significantly from the continuous spectra. As a result, it is shown that the creep compliance function, or the relaxation modulus function, can be predicted using experimental dynamic data (relaxation or creep, respectively), as well as anyone of the examined interconversion methods, with an accuracy close to 5%. The use of approximate or exact relations in the whole procedure was proved not to have a significant effect on the final result (referring mostly to the retardation spectra).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alves, N.M., Gomez Ribelles, J.L., Gomez Tejedor, J.A., Mano, J.F.: Viscoelastic behavior of poly(methyl methacrylate) networks with different cross-linking degrees. Macromolecules 37, 3735–3744 (2004)

    Article  Google Scholar 

  • Baumgaertel, M., Winter, H.H.: Interrelation between continuous and discrete relaxation time spectra. J. Non-Newton. Fluid Mech. 44, 15–36 (1992)

    Article  Google Scholar 

  • Berry, G.C., Plazek, D.J.: On the use of stretched—exponential functions for both linear viscoelastic creep and stress relaxation. Rheol. Acta 36, 320–329 (1997)

    Article  Google Scholar 

  • Bhattacharjee, S., Swamy, A.K., Daniel, J.S.: Continuous relaxation and retardation spectrum method for viscoelastic characterization of asphalt concrete. Mech. Time-Depend. Mater. 16(3), 287–305 (2012). doi:10.1007/s11043-011-9162-9

    Article  Google Scholar 

  • Chen, D.-L., Chiu, T.-C., Chen, T.-C., Chung, M.-H., Yang, P.-F., Lai, Y.-S.: Using DMA to simultaneously acquire Young’s relaxation modulus and time-dependent Poisson’s ration of a viscoelastic material. Proc. Eng. 79, 153–159 (2014)

    Article  Google Scholar 

  • Emri, I., Tschoegl, N.W.: Generating line spectra from experimental responses. Part 4. Application to experimental data. Rheol. Acta 33, 60–70 (1994)

    Article  Google Scholar 

  • Emri, I., von Bernstorff, B.S., Cvelbar, R., Nikonov, A.: Re-examination of the approximate methods for interconversion between frequency and time-dependent material functions. J. Non-Newton. Fluid Mech. 129, 75–84 (2005)

    Article  MATH  Google Scholar 

  • Fernández, P., Rodríguez, D., Lamela, M.J., Fernández-Canteli, A.: Study of the interconversion between viscoelastic behavior functions of PMMA. Mech. Time-Depend. Mater. 15, 169–180 (2011)

    Article  Google Scholar 

  • Ferry, J.D.: Viscoelastic Behavior of Polymers. Wiley, New York (1980)

    Google Scholar 

  • Georgiopoulos, P., Kontou, E., Niaounakis, M.: Thermomechanical properties and rheological behavior of biodegradable composites. Polym. Compos. 35(6), 1140–1149 (2014). doi:10.1002/pc.22761

    Google Scholar 

  • Grassia, L., D’Amore, A.: The relative placement of linear viscoelastic functions in amorphous glassy polymers. J. Rheol. 53, 339–356 (2009a). doi:10.1122/1.3056631

    Article  Google Scholar 

  • Grassia, L., D’Amore, A.: On the interplay between viscoelasticity and structural relaxation in glassy amorphous polymers. J. Polym. Sci., Part B, Polym. Phys. 47, 724–739 (2009b)

    Article  Google Scholar 

  • Grassia, L., D’Amore, A., Simon, S.L.: On the viscoelastic Poisson’s ratio in amorphous polymers. J. Rheol. 54, 1009–1022 (2010). doi:10.1122/1.3473811

    Article  Google Scholar 

  • Guedes, R.M., Marques, A.T., Cardon, A.: Creep or relaxation master curves calculated from experimental dynamic viscoelastic function. Sci. Eng. Compos. Mater. 7(3), 259–267 (1998)

    Article  Google Scholar 

  • Kaschta, J., Schwarzl, F.R.: Calculation of discrete retardation spectra from creep data—I. Method. Rheol. Acta 33, 517–529 (1994)

    Article  Google Scholar 

  • Liu, Y.: A direct method for obtaining discrete relaxation spectra from creep data. Rheol. Acta 40, 256–260 (2001)

    Article  Google Scholar 

  • Ninomiya, K.M., Ferry, J.D.: Some approximate equations useful in the phenomenological treatment of linear viscoelastic data. J. Colloid Interface Sci. 14, 36–48 (1959)

    Article  Google Scholar 

  • Park, S.W., Schapery, R.A.: Methods of interconversion between linear viscoelastic material functions. Part I. A numerical method based on Prony series. Int. J. Solids Struct. 36, 1653–1675 (1999a)

    Article  MATH  Google Scholar 

  • Park, S.W., Schapery, R.A.: Methods of interconversion between linear viscoelastic material functions. Part II. An approximate analytical method. Int. J. Solids Struct. 36(11), 1677–1699 (1999b)

    Article  MATH  Google Scholar 

  • Plazek, D.J., Ngai, K.L., Rendell, W.: An application of a unified relaxation model to the aging of Polystyrene below its glass temperature. Polym. Eng. Sci. 24, 1111–1116 (1984)

    Article  Google Scholar 

  • Plazek, D.J., Ragupathi, N., Orborn, S.J.: Determination of dynamic storage and loss compliance from creep data. J. Rheol. 23, 477–488 (1979)

    Article  Google Scholar 

  • Sane, S.B., Knauss, W.G.: The time-dependent bulk response of poly (methyl methacrylate). Mech. Time-Depend. Mater. 5, 293–324 (2001)

    Article  Google Scholar 

  • Saprunov, I., Gergesova, M., Emri, I.: Prediction of viscoelastic material functions from constant stress- or stain-rate experiments. Mech. Time-Depend. Mater. 18, 349–372 (2014)

    Article  Google Scholar 

  • Sorvari, J., Malinen, M.: Numerical interconversion between linear viscoelastic material functions with regularization. Int. J. Solids Struct. 44, 1291–1303 (2007)

    Article  MATH  Google Scholar 

  • Tschoegl, N.W., Knauss, W.G., Emri, I.: Poisson’s ratio in linear viscoelasticity—a critical review. Mech. Time-Depend. Mater. 6, 3–51 (2002)

    Article  Google Scholar 

  • Williams, G., Watts, D.C.: Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80 (1970)

    Article  Google Scholar 

  • Williams, G., Watts, D.C.: Further considerations of non symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans. Faraday Soc. 67, 1323–1335 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evagelia Kontou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsourinis, S., Kontou, E. Comparing interconversion methods between linear viscoelastic material functions. Mech Time-Depend Mater 22, 401–419 (2018). https://doi.org/10.1007/s11043-017-9363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-017-9363-y

Keywords

Navigation