Skip to main content
Log in

A content adaptive method of de-blocking and super-resolution of compressed images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new method of image upscaling along with de-blocking of compressed images has been presented. In the case of highly compressed images, there is a high probability that these images may contain the noise in the form of blocking artifacts. In this presented work, a spatial domain-based approach has been suggested with two roles, one of which is to process the image for reduction of compression-based blocking artifacts and other is to upscale the low-resolution image to high-resolution image. Image upscaling is one of the implementation techniques of image super-resolution (SR). It is a type of SR where only a single image-based SR is being implemented. In the proposed technique, image de-blocking along with interpolation based super resolution has been developed in the spatial domain, therefore it is a practical and realistic method. The results of the proposed method in the form of quality metrics like PSNR, MSE and MSSIM have been compared with other methods of interpolation along with de-blocking method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Alan W, Liew C, Yan H (2004) Blocking artifacts suppression in block-coded images using over complete wavelet representation. IEEE Trans Circ Syst Vid Technol 14(4):450–461

    Article  Google Scholar 

  2. Baker S, Kanade T (2002) Limits on super-resolution and how to break them. IEEE Trans Pattern Anal Mach Intell 24:1167–1183

    Article  Google Scholar 

  3. Bevilacqua M, Roumy A, Guillemot C, Morel M-LA (2014) Single-image super-resolution via linear mapping of interpolated self examples. IEEE Trans Image Process 23(12):5334–5347

    Article  MathSciNet  Google Scholar 

  4. Carrato S, Tenze L (2000) A high quality 2× image interpolator. IEEE Signal Process Lett 7(6):132–134

    Article  Google Scholar 

  5. Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: Proc Eur Conf Comput Vis (ECCV), pp. 184–199

  6. Freeman WT, Jones TR, Pasztor EC (2002) Example-based super-resolution. IEEE Comput Graph Appl 22(2):56–65

    Article  Google Scholar 

  7. HaCohen Y, Fattal R, Lischinski D (2010) Image upsampling via texture hallucination. In: Proc IEEE Int Conf Comput Photograph, pp. 1–8

  8. Huang J-B, Singh A, Ahuja N (2015) Single image super-resolution from transformed self-exemplars. In: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR), pp. 5197–5206

  9. Kim J (2009) Adaptive blocking artifacts reduction using wavelet-based block analysis. IEEE Trans Consum Electron 55(2):933–940

    Article  Google Scholar 

  10. Kim KI, Kwon Y (2008) Example-based learning for single-image super-resolution. In: Pattern Recognition (lecture notes in computer science), vol 5096. Springer, Berlin, pp 456–465

    Google Scholar 

  11. Kim Y, Park C-S, Ko S-J (2003) Fast POCS based post-processing technique for HDTV. IEEE Trans Consum Electron 49(4):1438–1447

    Article  Google Scholar 

  12. Li X, Orchard MT (2001) New edge-directed interpolation. IEEE Trans Image Process 10(10):1521–1527

    Article  Google Scholar 

  13. List P, Joch A, Lainema J, Bjontegaard G, Karczewicz M (2003) Adaptive deblocking filter. IEEE Trans Circ Syst Vid Technol 13(7):614–619

    Article  Google Scholar 

  14. Liu Y, Zhang Y, Guo Q, Zhang C (2014) Image interpolation based on weighted and blended rational function. In: Proc ACCV Workshops Comput Vis, pp. 78–88

  15. Luo Y, Ward RK (2003) Removing the blocking artifacts of block-based DCTcompressed images. IEEE Trans Images Process 12(7):838–843

    Article  Google Scholar 

  16. Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag 20(3):21–36

    Article  Google Scholar 

  17. Prasad Jaiswal S, Jakhetiya V, Kumar A, Tiwari AK (2012) A low complex context adaptive image interpolation algorithm for real-time applications. IEEE International Instrumentation and Measurement Technology Conf

  18. Ruangsang W, Aramvith S (2017) Efficient super-resolution algorithm using overlapping bicubic interpolation. IEEE 6th Global Conference on Consumer Electronics (GCCE 2017)

  19. Sajjad M, Ejaz N, Baik SW (2014) Multi-kernel based adaptive interpolation for image super-resolution. Multimed Tools Appl 72:2063–2085

    Article  Google Scholar 

  20. Sajjad M, Ejaz N, Mehmood I, Baik SW (2015) Digital image super-resolution using adaptive interpolation based on Gaussian function. Multimed Tools Appl 74:8961–8977. https://doi.org/10.1007/s11042-013-1570-1

    Article  Google Scholar 

  21. Singh A, Singh J (2016) Super resolution applications in modern digital image processing. Int J Comp Appl (0975–8887) 150(2):6–8

  22. Singh S, Kumar V, Verma HK (2007) Reduction of blocking artifacts in JPEGcompressed images. Digital Signal Process 17:225–243

    Article  Google Scholar 

  23. Singh J, Singh S, Singh D, Uddin M (2011) A signal adaptive filter for blocking effect reduction of JPEG compressed image. Int J Electron Commun (AEU) 65:827–839

    Article  Google Scholar 

  24. Tang Y, Yuan Y, Yan P, Li X (2013) Greedy regression in sparse coding space for single-image super-resolution. J Vis Commun Image Represent 24(2):148–159

  25. Thévenaz P, Blu T, Unser M (2000) Image interpolation and resampling. In: Proc Handbook Med Imag, pp. 393–420

  26. Timofte R, De Smet V, Van Gool L (2013) Anchored neighborhood regression for fast example-based super-resolution. In: Proc IEEE Int Conf Comput Vis, pp. 1920–1927

  27. Timofte R, De Smet V, Van Gool L (2015) A+: Adjusted anchored neighborhood regression for fast super-resolution. In: Proc Asian Conf Comput Vis (ACCV), pp. 111–126

  28. Unser M, Aldroubi A, Eden M (1991) Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans Pattern Anal Mach Intell 13:277–285

    Article  Google Scholar 

  29. Wallace GK (1991) The JPEG still picture compression standard. Commun ACM 34(4):30–44

  30. Wang C, Zhou J, Liu S (2013) Adaptive non-local means filter for image deblocking. Signal Process Image Commun 28:522–530

    Article  Google Scholar 

  31. Wang J, Wu Z, Jeon G, Jeong J (2015) An efficient spatial deblocking of images with DCT compression. Digital Signal Process 42:80–88

    Article  MathSciNet  Google Scholar 

  32. Wu S, Yan H, Tan Z (2001) An efficient wavelet-based deblocking algorithmfor highly compressed images. IEEE Trans Circ Syst Vid Technol 11(11):1193–1198

  33. Xiong Z, Sun X, Wu F (2010) Robust web image/video super-resolution. IEEE Trans Image Process 19(8):2017–2028

    Article  MathSciNet  Google Scholar 

  34. Yang C-Y, Yang M-H (2013) Fast direct super-resolution by simple functions. In: Proc IEEE Int Conf Comput Vis (ICCV), pp. 561–568

  35. Yang J, Wright J, Huang T, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. In: Proc IEEE Conf Comput Vis Pattern Recognit, pp. 1–8

  36. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    Article  MathSciNet  Google Scholar 

  37. Zhou D, Shen X, Dong W (2012) Image zooming using directional cubic convolution interpolation. IET Image Process 6(6):627–634

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanjot Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Singh, J. A content adaptive method of de-blocking and super-resolution of compressed images. Multimed Tools Appl 80, 11095–11131 (2021). https://doi.org/10.1007/s11042-020-10112-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10112-3

Keywords

Navigation