Skip to main content
Log in

Speech and music classification using spectrogram based statistical descriptors and extreme learning machine

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This article proposes a novel feature extraction approach for speech/music classification based on generalized Gaussian distribution descriptors extracted from IIR-CQT spectrogram representation. IIR-CQT spectrogram visual representation provides superior temporal resolution at high frequencies and better spectral resolution for low frequencies compared to the conventional short-time Fourier transform analysis which provides uniform frequency resolution. Multi-level decomposition of the spectrogram image is then performed using the Nonsubsampled Contourlet Transform (NSCT) which a fully shift-invariant, multi-scale, and multi-direction expansion that can preserve the edges of the textural pattern of speech and music. The generalized Gaussian distribution (GGD) parameters are produced using maximum likelihood estimation (MLE) from the NSCT subbands to create the image feature descriptor. Chaos crow search algorithm is employed to chose the most relevant feature sub-set and to discard redundant features and finally the extreme learning machine classifier categorizes input audio segment into speech/music. The experimental results show that the proposed feature descriptor is effective and performs better compared to the existing approaches in the speech/music classification. In addition, mismatched training and testing results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alam J, Kenny P (2017) Spoofing detection employing infinite impulse response-constant q transform-based feature representations. In: 25th European Signal Processing Conference (EUSIPCO 2017), pp 111–115

  2. Anandhi D, Valli S (2018) An algorithm for multi-sensor image fusion using maximum a posteriori and nonsubsampled contourlet transform. Comput Electr Eng 65:139–152. https://doi.org/10.1016/j.compeleceng.2017.04.002

    Article  Google Scholar 

  3. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  4. Bartlett PL (1997) For valid generalization, the size of the weights is more important than the size. In: Jordan M, Kearns M, Solla S (eds) Neural Information Processing Systems 1997, pp 134–139

  5. Cancela P, Rocamora M, Lopez E (2009) Feature selection for high-dimensional data: a fast correlation-based filter solution. In: 10th International Society for Music Information Retrieval Conference (ISMIR 2009), pp 309–314

  6. Chacko BP, Vimal Krishnan VR, Raju G, Babu Anto P (2012) Handwritten character recognition using wavelet energy and extreme learning machine. Int J Mach Learn Cybern 3(2):149–161. https://doi.org/10.1007/s13042-011-0049-5

    Article  Google Scholar 

  7. Costa Y, Oliveira LS, Silla C (2017) An evaluation of convolutional neural networks for music classification using spectrograms. Appl Soft Comput 52 (Supplement C):28–38. https://doi.org/10.1016/j.asoc.2016.12.024

    Article  Google Scholar 

  8. Cunha L, Zhou J (2006) The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process 15(10):3089–3101

    Article  Google Scholar 

  9. Devanna H, Kumar GAES, Giri Prasad MN (2017) A spatio-frequency orientational energy based medical image fusion using non-sub sampled contourlet transform. Cluster Computing. https://doi.org/10.1007/s10586-017-1351-0

  10. Didiot E, Illina I, Fohr D, Mella O (2010) A wavelet-based parameterization for speech/music discrimination. Comput Speech Lang 24(2):341–357. https://doi.org/10.1016/j.csl.2009.05.003

    Article  Google Scholar 

  11. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106

    Article  Google Scholar 

  12. Do MN, Vetterli M (2006) Wavelet-based texture retrieval using generalized gaussian density and kullback-leibler distance. IEEE Trans Image Process 11(2):146–158

    Article  MathSciNet  Google Scholar 

  13. El-Maleh K, Klein M, Petrucci G, Kabal P (2000) Speech/music discrimination for multimedia applications. In: Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, ICASSP 2000. IEEE, pp 2445–2448

  14. Evans M, Hastings N, Peacock B (2000) Statistical distributions, third edn. Wiley Series in Probability and Statistics. Wiley

  15. Fuchs G (2015) A robust speech/music discriminator for switched audio coding. In: 23rd European Signal Processing Conference (EUSIPCO). IEEE, pp 569–573. https://doi.org/10.1109/EUSIPCO.2015.7362447

  16. Ghosal A, Chakraborty R, Chakraborty R, Haty S, Dhara BC, Saha SK (2009) Speech/music classification using occurrence pattern of zcr and ste. In: 3rd International Symposium on Intelligent Information Technology Application. IEEE, pp 435–438

  17. Ghosal A, Dhara BC, Saha SK (2011) Speech/music classification using empirical mode decomposition. In: 2nd International Conference on Emerging Applications of Information Technology (EAIT). IEEE, pp 49–52. https://doi.org/10.1109/EAIT.2011.19

  18. Ghosal A, Dutta S (2017) Speech/music discrimination using perceptual feature. In: International Conference on Computational Science and Engineering. CRC Press, pp 71–76

  19. Guo JM, Prasetyo H, Farfoura ME, Lee H (2015) Vehicle verification using features from curvelet transform and generalized gaussian distribution modeling. IEEE Trans Intell Transp Syst 16(4):1989–1998

    Article  Google Scholar 

  20. Hirvonen T (2014) Speech/music classification of short audio segments. In: IEEE International symposium on multimedia. IEEE, pp 135–138. https://doi.org/10.1109/ISM.2014.27

  21. https://www.statista.com/topics/2019/youtube. Accessed: 2018-02-26

  22. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: Theory and applications. Neurocomputing 70(1):489–501. https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  23. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B (Cybern) 42(2):513–529. https://doi.org/10.1109/TSMCB.2011.2168604

    Article  Google Scholar 

  24. Huang X (2017) Automatic video superimposed text detection based on nonsubsampled contourlet transform. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-017-4619-8

  25. Jensen R, Shen Q (2008) Computational intelligence and feature selection. Wiley, Hoboken

    Book  Google Scholar 

  26. Kacprzak S, Ziółko M (2013) Speech/music discrimination via energy density analysis, Springer, Berlin

  27. Kacprzak S, ej Chwiec ko B, Zioko B (2017) Speech/music discrimination for analysis of radio stations. In: International Conference on Systems, Signals And Image Processing (IWSSIP). IEEE, pp 1–4. https://doi.org/10.1109/IWSSIP.2017.7965606

  28. Karpagachelvi S, Arthanari M, Sivakumar M (2012) Classification of electrocardiogram signals with support vector machines and extreme learning machine. Neural Comput Appl 21(6):1331–1339. https://doi.org/10.1007/s00521-011-0572-z

    Article  Google Scholar 

  29. Khan MKS, Al-Khatib WG (2006) Machine-learning based classification of speech and music. Multimed Syst 12(1):55–67. https://doi.org/10.1007/s00530-006-0034-0

    Article  Google Scholar 

  30. Khonglah BK, Prasanna SM (2016) Speech / music classification using speech-specific features. Digit Signal Process 48(Supplement C):71–83. https://doi.org/10.1016/j.dsp.2015.09.005

    Article  MathSciNet  Google Scholar 

  31. Kos M, Kačič Z, Vlaj D (2013) Acoustic classification and segmentation using modified spectral roll-off and variance-based features. Digit Signal Process 23(2):659–674. https://doi.org/10.1016/j.dsp.2012.10.008

    Article  MathSciNet  Google Scholar 

  32. Krupinski R, Purczynski J (2006) Approximated fast estimator for the shape parameter of generalized gaussian distribution. Sinal Process 86(2):205–211

    Article  MATH  Google Scholar 

  33. Lan Y, Hu Z, Soh YC, Huang GB (2013) An extreme learning machine approach for speaker recognition. Neural Comput Applic 22(3):417–425. https://doi.org/10.1007/s00521-012-0946-x

    Article  Google Scholar 

  34. Lavner Y, Ruinskiy D (2009) A decision-tree-based algorithm for speech/music classification and segmentation. EURASIP Journal on Audio, Speech and Music Processing 2009(1). https://doi.org/10.1155/2009/239892

  35. Lee CC, Shih CY, Lee SK, Hong WT (2012) Enhancement of blood vessels in retinal imaging using the nonsubsampled contourlet transform. Multidim Syst Signal Process 23(4):423–436

    Article  MathSciNet  MATH  Google Scholar 

  36. Li Y, Li T, Liu H (2017) Recent advances in feature selection and its applications. Knowl Inf Syst 53(3):551–577. https://doi.org/10.1007/s10115-017-1059-8

    Article  Google Scholar 

  37. Lim C, Chang H (2012) Enhancing support vector machine-based speech/music classification using conditional maximum a posteriori criterion. IET Signal Process 6:335–340

    Article  MathSciNet  Google Scholar 

  38. Lim C, Chang JH (2015) Efficient implementation techniques of an svm-based speech/music classifier in smv. Multimed Tools Appl 74(15):5375–5400. https://doi.org/10.1007/s11042-014-1859-8

    Article  Google Scholar 

  39. Liu Q, Yin J, Leung VCM, Zhai JH, Cai Z, Lin J (2016) Applying a new localized generalization error model to design neural networks trained with extreme learning machine. Neural Comput Applic 27(1):59–66. https://doi.org/10.1007/s00521-014-1549-5

    Article  Google Scholar 

  40. Luo F, Guo W, Yu Y, Chen G (2017) A multi-label classification algorithm based on kernel extreme learning machine. Neurocomputing 260:313–320. https://doi.org/10.1016/j.neucom.2017.04.052

    Article  Google Scholar 

  41. Miao J, Niu L (2016) A survey on feature selection. Proced Comput Sci 91 (Supplement C):919–926. https://doi.org/10.1016/j.procs.2016.07.111

    Article  Google Scholar 

  42. Muñoz-Expósito J, García-Galán S, Ruiz-Reyes N, Vera-Candeas P (2007) Adaptive network-based fuzzy inference system vs. other classification algorithms for warped lpc-based speech/music discrimination. Eng Appl Artif Intell 20(6):783–793. https://doi.org/10.1016/j.engappai.2006.10.007

    Article  Google Scholar 

  43. Nanni L, Costa Y, Lumini A, Kim MY, Baek SR (2016) Combining visual and acoustic features for music genre classification. Expert Syst Appl 45:108–117. https://doi.org/10.1016/j.eswa.2015.09.018

    Article  Google Scholar 

  44. Nanni L, Costa Y, Lucio D, Silla C, Brahnam S (2017) Combining visual and acoustic features for audio classification tasks. Pattern Recogn Lett 88(Supplement C):49–56. https://doi.org/10.1016/j.patrec.2017.01.013

    Article  Google Scholar 

  45. Pikrakis A, Giannakopoulos T, Theodoridis S (2008) A speech/music discriminator of radio recordings based on dynamic programming and bayesian networks. IEEE Trans Multimed 10(5):846–67. 0.1109/TMM.2008.922870

    Article  Google Scholar 

  46. Po DDY, Do MN (2006) Directional multiscale modeling of images using the contourlet transform. IEEE Trans Image Process 15(6):1610–1620

    Article  MathSciNet  Google Scholar 

  47. Qu H, Peng Y, Sun W (2007) Texture image retrieval based on contourlet coefficient modeling with generalized gaussian distribution. In: Kang L, Liu Y, Zeng S (eds) Advances in Computation and Intelligence. Springer Berlin Heidelberg, pp 493–502

  48. Rashno A, Nazari B, Sadri S, Saraee M (2017) Effective pixel classification of mars images based on ant colony optimization feature selection and extreme learning machine. Neurocomputing 226:66–79. https://doi.org/10.1016/j.neucom.2016.11.030

    Article  Google Scholar 

  49. Reyes NR, Candeas PV, Galán SG, Muñoz J (2010) Two-stage cascaded classification approach based on genetic fuzzy learning for speech/music discrimination. Eng Appl Artif Intell 23(2):151–159. https://doi.org/10.1016/j.engappai.2009.06.006

    Article  Google Scholar 

  50. Ruiz-Reyes N, Vera-Candeas P, Muñoz JE, García-galán S, Cañadas FJ (2009) New speech/music discrimination approach based on fundamental frequency estimation. Multimed Tools Appl 41(2):253–286. https://doi.org/10.1007/s11042-008-0228-x

    Article  Google Scholar 

  51. Salaken SM, Khosravi A, Nguyen T, Nahavandi S (2017) Extreme learning machine based transfer learning algorithms: a survey. Neurocomputing 267:516–524. https://doi.org/10.1016/j.neucom.2017.06.037

    Article  Google Scholar 

  52. Saunders J (1996) Real-time discrimination of broadcast speech/music. In: Proceedings of ICASSP, ICASSP 1996. IEEE, vol 2, pp 993–996

  53. Sayed GI, Hassanien AE, Azar AT (2017) Feature selection via a novel chaotic crow search algorithm. Neural Computing and Applications. https://doi.org/10.1007/s00521-017-2988-6

  54. Scheirer E, Slaney M (1997) Construction and evaluation of a robust multifeature speech/music discriminator. In: Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’97), ICASSP ’97. IEEE Computer Society, vol 2, pp 1331–1335

  55. Sell G, Clark P (2014) Music tonality features for speech/music discrimination. In: IEEE International conference on acoustic, speech and signal processing (ICASSP). IEEE, pp 2489–2493. https://doi.org/10.1109/ICASSP.2014.6854048

  56. Sharan RV, Moir TJ (2015) Noise robust audio surveillance using reduced spectrogram image feature and one-against-all svm. Neurocomputing 158:90–99. https://doi.org/10.1016/j.neucom.2015.02.001

    Article  Google Scholar 

  57. Shensa M (1992) The discrete wavelet transform: wedding the trous and mallat algorithms. IEEE Trans Signal Process 40(10):2464–2482

    Article  MATH  Google Scholar 

  58. Shirazi J, Ghaemmaghami S (2010) Improvement to speech-music discrimination using sinusoidal model based features. Multimed Tools Appl 50(2):415–435. https://doi.org/10.1007/s11042-009-0416-3

    Article  Google Scholar 

  59. Tsipas N, Vrysis L, Dimoulas C, Papanikolaou G (2017) Efficient audio-driven multimedia indexing through similarity-based speech / music discrimination. Multimed Tools Appl 76(24):25603–25621. https://doi.org/10.1007/s11042-016-4315-0

    Article  Google Scholar 

  60. Varanasi M, Aazhang B (1989) Parametric generalized gaussian density estimation. J Acoust Soc Amer 86(4):1404–1415. https://doi.org/10.1121/1.398700

    Article  Google Scholar 

  61. Wan C, Wu Y (2015) Image retrieval by using non-subsampled shearlet transform and krawtchouk moment invariants. In: Jawahar CV, Shan S (eds) Computer Vision - ACCV 2014 Workshops. Springer International Publishing, pp 218–232

  62. Wang WQ, GO W, Ying DW (2003) A fast and robust speech music discrimination approach. In: Fourth International Conference on Information, Communications & Signal Processing, Fourth IEEE Pacific-Rim Conference on Multimedia, ICICS-PCM 2003. IEEE, pp 1325–1329

  63. Wang M, Chen H, Yang B, Zhao X, Hu L, Cai Z, Huang H, Tong C (2017) Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267:69–84. https://doi.org/10.1016/j.neucom.2017.04.060

    Article  Google Scholar 

  64. Wu Q, Yan Q, Deng H, Wang J (2010) A combination of data mining method with decision trees building for speech/music discrimination. Comput Speech Lang 24(2):257–272. https://doi.org/10.1016/j.csl.2009.04.009

    Article  Google Scholar 

  65. Yan CC, Zhang Y, Xu J, Dai F, Zhang J, Dai Q, Wu F (2014) Efficient parallel framework for hevc motion estimation on many-core processors. IEEE Trans Circ Syst Video Tech 24(12):2077–2089

    Article  Google Scholar 

  66. Yan C, Xie H, Chen J, Zha ZJ, Hao X, Zhang Y, Dai Q (2018) An effective uyghur text detector for complex background images. IEEE Transactions on Multimedia pp 1–1

  67. Yan C, Xie H, Liu S, Yin J, Zhang Y, Dai Q (2018) Effective uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans. Intell Trans Syst 19(1):220–229

    Article  Google Scholar 

  68. Yan C, Xie H, Yang D, Yin J, Zhang Y, Dai Q (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans. Intell Transp Syst 19(1):284–295

    Article  Google Scholar 

  69. Yang G, Li M, Chen L, Yu J (2015) The nonsubsampled contourlet transform based statistical medical image fusion using generalized gaussian density. Comput Math Methods Med 2015(Article ID 262819):1–13. https://doi.org/10.1155/2015/262819

    MathSciNet  MATH  Google Scholar 

  70. Yu L, Liu H (2003) Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Fawcett T, Mishra N (eds) Proceedings, Twentieth International Conference on Machine Learning, vol 2, pp 856–863

  71. Yu S, Zhang A, Li H (2012) A review of estimating the shape parameter of generalized gaussian distribution. J Comput Inf Syst 8(21):9055–9064

    Google Scholar 

  72. Zhang Q, Guo-long B (2009) Multifocus image fusion using the nonsubsampled contourlet transform. Signal Process 89(7):1334–1346

    Article  MATH  Google Scholar 

  73. Zhang H, Yang XK, Zhang WQ, Zhang WL, Liu J (2016) Application of i-vector in speech and music classification. In: IEEE International symposium on signal processing and information technology (ISSPIT). IEEE, pp 1–5. https://doi.org/10.1109/ISSPIT.2016.7885999

  74. Zhao J, Zhou Z, Cao F (2014) Human face recognition based on ensemble of polyharmonic extreme learning machine. Neural Comput Appl 24(6):1317–1326. https://doi.org/10.1007/s00521-013-1356-4

    Article  Google Scholar 

  75. Zhou H, Sadka A, Jiang RM (2008) Feature extraction for speech and music discrimination. In: International workshop on content-based multimedia indexing, CBMI 2008. IEEE, pp 170–173. https://doi.org/10.1109/CBMI.2008.4564943

Download references

Acknowledgments

The authors would like to thank Professor Dan Ellis for providing the Scheirer & Slaney database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gajanan K. Birajdar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birajdar, G.K., Patil, M.D. Speech and music classification using spectrogram based statistical descriptors and extreme learning machine. Multimed Tools Appl 78, 15141–15168 (2019). https://doi.org/10.1007/s11042-018-6899-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6899-z

Keywords

Navigation