Skip to main content
Log in

MSIP: Multi-scale image pre-processing method applied in image mosaic

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Mosaic reconstruction is a stitching process of multiple images, of a particular scene, in a single frame that provides a larger amount of information compared to the separate images. Nowadays, image mosaic is a key tool that has invaded different fields and disciplines such as photography, virtual environment, medicine, etc. In this work, we propose a new pre-processing approach of multi-scale images we have named MSIP (Multi-Scale Image Pre-processing), invariant to scale changes and based on the distance between the matched points detected by SIFT. Its main purpose is to correct the scale difference between images to reduce outliers and alignment errors. The experimentation and statistical analysis, on a real database, show the robustness of our approach by improving the quality of mosaic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Alahi A, Ortiz R, Vandergheynst P (2012) FREAK: Fast Retina Keypoint. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2012:510–517. doi:10.1109/CVPR.2012.6247715

    Google Scholar 

  2. Allène C, Pons JP, Keriven R (2008). Seamless image-based texture atlases using multi-band blending. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference on (pp. 1-4). IEEE. doi: 10.1109/ICPR.2008.4761913

  3. Baataoui A, Laraqui A., Saaidi A, Satori K., Jarrar A & Masrar M. (2015). Image Mosaicing using a self-calibration camera. 3D research, 6(2), 1-15. doi : 10.1007/s13319-015-0048-5

  4. Bao, P., Zhang, L., & Wu, X. (2005). Canny edge detection enhancement by scale multiplication. Pattern analysis and machine intelligence, IEEE Transactions on, 27(9), 1485-1490. doi : 10.1109/TPAMI.2005.173

  5. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359. doi:10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  6. Bindemann M, Attard J, Leach A, Johnston RA (2013) The effect of image Pixelation on unfamiliar-face matching. Appl Cogn Psychol 27(6):707–717. doi:10.1002/acp.2970

    Article  Google Scholar 

  7. Brandt J. (2010) Transform coding for fast approximate nearest neighbor search in high dimensions, IEEE Conf. on Computer Vision and Pattern Recognition, 2010. [Data file]. Retrieved from Adobe System : http://www.adobe.com/go/datasets

  8. Brown LG (1992) A survey of image registration techniques. ACM computing surveys (CSUR) 24(4):325–376. doi:10.1145/146370.146374

    Article  Google Scholar 

  9. Brown M, Lowe DG (2007) Automatic panoramic image stitching using invariant features. Int J Comput Vis 74(1):59–73. doi:10.1007/s11263-006-0002-3

    Article  Google Scholar 

  10. Brown M, Szeliski R, Winder S. (2005). Multi-image matching using multi-scale oriented patches. In computer vision and Pattern Recognition, 2005. CVPR 2005. IEEE computer society Conference on (Vol. 1, pp. 510-517). IEEE. doi: 10.1109/CVPR.2005.235

  11. Burt PJ, delson EHA (1983) A multi resolution spline with application to image mosaics. ACM Trans Graph 2(4):217–236. doi:10.1145/245.247

    Article  Google Scholar 

  12. Chen Y, Xu M, Liu HL, Huang WN, Xing J (2014) An improved image mosaic based on Canny edge and an 18-dimensional descriptor. Optik-International Journal for Light and Electron Optics 125(17):4745–4750. doi:10.1016/j.ijleo.2014.04.069

    Article  Google Scholar 

  13. Ge Y, Gao C, Liu G. (2016). An improved RANSAC image stitching algorithm based similarity degree. In International Conference on multimedia modeling (pp. 185-196). Springer International publishing. Doi : 10.1007/978-3-319-27674-8_17

  14. Ghosh D, Kaabouch N (2016) A survey on image mosaicing techniques. J Vis Commun Image Represent 34:1–11. doi:10.1016/j.jvcir.2015.10.0141047-3203

  15. Huang W, Han X. (2013). An improved RANSAC algorithm of color image stitching. In Proceedings of 2013 Chinese intelligent automation Conference (pp. 21–28). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-38466-0_3

  16. Jiang N, Wang Jand Mu Y. (2014). Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum information processing, 1-26. doi: 10.1007/s11128-015-1099-5

  17. Kekec T, Yildirim A, Unel M (2014) A new approach to real-time mosaicing of aerial images. Robot Auton Syst 62(12):1755–1767. doi:10.1016/j.robot.2014.07.010

    Article  Google Scholar 

  18. Koo HI, Cho NI (2011) Feature-based image registration algorithm for image stitching applications on mobile devices. Consumer Electronics, IEEE Transactions on 57(3):1303–1310. doi:10.1109/TCE.2011.6018888

    Article  Google Scholar 

  19. Krämer P, Hadar O, Benois-Pineau J, Domenger JP (2007) Super-resolution mosaicing from MPEG compressed video. Signal Process Image Commun 22(10):845–865. doi:10.1016/j.image.2007.06.004

    Article  Google Scholar 

  20. Laraqui A, Baataoui A, Saaidi A, Jarrar A, Masrar M, Satori K (2016) Image mosaicing using voronoi diagram. Multimedia Tools and Applications:1–27. doi:10.1007/s11042-016-3478-z

  21. Lehmann TM, Gönner C, Spitzer K (1999) Survey: interpolation methods in medical image processing. Medical Imaging, IEEE Transactions on 18(11):1049–1075. doi:10.1109/42.816070

    Article  Google Scholar 

  22. Lopez-Gulliver R, Hatamoto T, Matsumura K, Noma H (2015). Synthesis of omnidirectional movie using a set of key frame panoramic images. In 2015 I.E. virtual reality (VR) (pp. 221-222). IEEE. doi: 10.1109/VR.2015.7223375

  23. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110. doi:10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  24. Ma X, Liu D, Zhang J, Xin J (2015) A fast affine-invariant features for image stitching under large viewpoint changes. Neuro computing 151:1430–1438. doi:10.1016/j.neucom.2014.10.045

    Google Scholar 

  25. Mikolajczyk K & Schmid C (2002). An affine invariant interest point detector. In Computer Vision—ECCV 2002 (pp. 128–142). Springer Berlin Heidelberg. doi : 10.1007/3-540-47969-4_9

  26. Misra I, Moorthi S M, Dhar D, Ramakrishnan R. (2012). An automatic satellite image registration technique based on Harris corner detection and random sample consensus (RANSAC) outlier rejection model. In recent advances in information technology (RAIT), 2012 1st International Conference on (pp. 68-73). IEEE. doi: 10.1109/RAIT.2012.6194482

  27. Montechiesi L, Cocconcelli MRR (2015) Artificial immune system via Euclidean distance minimization for anomaly detection in bearings. Mech Syst Signal Process. doi:10.1016/j.ymssp.2015.04.017

    Google Scholar 

  28. Morel JM, Yu G (2009) ASIFT: a new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences 2(2):438–469. doi:10.1137/080732730

    Article  MathSciNet  MATH  Google Scholar 

  29. Pan, J., Wang, M., Cao, X., Chen, S., & Hu, F. (2016). A multi-resolution blending considering changed regions for Orthoimage mosaicking. Remote sensing, 8(10), 842. Doi : 10.3390/rs8100842

  30. Pérez, P., Gangnet, M., & Blake, A. (2003). Poisson image editing. In ACM Transactions on graphics (TOG). 22(3), 313-318. ACM. Doi : 10.1145/882262.882269

  31. Raguram R, Frahm JM, Pollefeys M (2008) A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus, In computer vision–ECCV 2008 (pp. 500–513). Springer, Berlin Heidelberg. doi:10.1007/978-3-540-88688-4_37

    Book  Google Scholar 

  32. Richardson H, Abraham E (1990) Effect of pixelation on the switching speeds of InSb bistable elements. JOSA B 7(6):1051–1056. doi:10.1364/JOSAB.7.001051

    Article  Google Scholar 

  33. Rosten E, Porter R, Drummond T (2010) Faster and better: a machine learning approach to corner detection. IEEE Trans Pattern Anal Mach Intell 32(1):105–119. doi:10.1109/TPAMI.2008.275

    Article  Google Scholar 

  34. E. Rosten, R. Porter, T. Drummond, (2010) Faster and better: a machine learning approach to corner detection, IEEE Trans. Pattern anal. Mach. Intell. 32 (1). 105–119. doi: 10.1109/TPAMI.2008.275

  35. Saeed S, Hafiz R, Rasul A, Khan MM, Cho Y, Park U, Cha J (2015) A unified panoramic stitching and multi-projector rendering scheme for immersive panoramic displays. Displays 40:78–87. doi:10.1016/j.displa.2015.06.002

    Article  Google Scholar 

  36. Saito T, Toriwaki JI (1994) New algorithms for Euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recogn 27(11):1551–1565. doi:10.1016/0031-3203(94)90133-3

    Article  Google Scholar 

  37. Shinde A, Matham MV (2014) Pixelate removal in an image fiber probe endoscope incorporating comb structure removal methods. Journal of Medical Imaging and Health Informatics 4(2):203–211. doi:10.1166/jmihi.2014.1255

    Article  Google Scholar 

  38. Song F, Lu B (2013) An automatic video image mosaic algorithm based on SIFT feature matchings, In Proceedings of the 2012 International Conference on communication, Electronics and automation engineering (pp. 879–886). Springer, Berlin Heidelberg. doi:10.1007/978-3-642-31698-2_124

    Book  Google Scholar 

  39. Szeliski R (2006) Image alignment and stitching: a tutorial. Foundations and Trends® in Computer Graphics and Vision 2(1):1–104. doi:10.1561/0600000009

    Article  MathSciNet  MATH  Google Scholar 

  40. Thévenaz P, Blu Tand Unser M (2000) Interpolation revisited [medical images application]. Medical Imaging, IEEE Transactions on 19(7):739–758. doi:10.1109/42.875199

    Article  Google Scholar 

  41. Trajković M, Hedley M (1998) Fast corner detection. Image Vis Comput 16(2):75–87. doi:10.1016/S0262-8856(97)00056-5

    Article  Google Scholar 

  42. Uyttendaele M, Eden A, Skeliski R. (2001). Eliminating ghosting and exposure artifacts in image mosaics. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 I.E. computer society Conference on 2, II-509. IEEE doi: 10.1109/CVPR.2001.991005

  43. Xiong Y & Pulli K. (2010). Fast panorama stitching for high-quality panoramic images on mobile phones. Consumer Electronics, IEEE Transactions on, 56(2), 298-306. Doi : 10.1109/TCE.2010.5505931

  44. Zaragoza J, Chin TJ, Tran QH, Brown MS, Suter D (2014) As-projective-as-possible image stitching with moving DLT. Pattern Analysis and Machine Intelligence, IEEE Transactions on 36(7):1285–1298. doi:10.1109/TPAMI.2013.247

    Article  Google Scholar 

  45. Zhou P, Luo X. (2011). A robust feature matching algorithm based on CSIFT descriptors. In signal processing, communications and computing (ICSPCC), 2011 I.E. International Conference on (pp. 1-4). IEEE. doi: 10.1109/ICSPCC.2011.6061763

  46. Zhou P, Luo X. (2012). An efficient multi-view image stitching algorithm based on CSIFT features. In future communication. Computing, control and management (pp. 407–413). Springer Berlin Heidelberg. doi:10.1007/978-3-642-27314-8_55

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A . Laraqui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laraqui, A..., Saaidi, A. & Satori, K. MSIP: Multi-scale image pre-processing method applied in image mosaic. Multimed Tools Appl 77, 7517–7537 (2018). https://doi.org/10.1007/s11042-017-4659-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4659-0

Keywords

Navigation