Skip to main content
Log in

Multi-view 3D reconstruction by random-search and propagation with view-dependent patch maps

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes an efficient multi-view 3D reconstruction method based on randomization and propagation scheme. Our method progressively refines a 3D model of a given scene by randomly perturbing the initial guess of 3D points and propagating photo-consistent ones to their neighbors. While finding local optima is an ordinary method for better photo-consistency, our randomization and propagation takes lucky matchings to spread better points replacing old ones for reducing the computational complexity. Experiments show favorable efficiency of the proposed method accompanied by competitive accuracy with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://grail.cs.washington.edu/rome/rome/index_5.html

  2. http://vision.middlebury.edu/mview/eval/

References

  1. Agarwal S, Snavely N, Simon I, Seitz SM, Szeliski R (2009) Building rome in a day. In: Proc. of Intl Conf. on Computer Vision (ICCV), pages 72-79. IEEE

  2. Barnes C, Shechtman E, Finkelstein A, Goldman DB (2009) Patchmatch: A randomized correspondence algorithm for structural image editing. ACM Trans Graph 28(3):24

  3. Besse F, Rother C, Fitzgibbon AW, Kautz J (2012) Pmbp: Patchmatch belief propagation for correspondence field estimation. In: Proc. of British Machine Vision Conf. (BMVC)

  4. Bleyer M, Rhemann C, Rother C (2011) Patchmatch stereo - stereo matching with slanted support windows. In: Proc. of British Machine Vision Conf. (BMVC)

  5. Bradley D, Boubekeur T, Heidrich W (2008) Accurate multi-view reconstruction using robust binocular stereo and surface meshing. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR):1–8

  6. Campbell ND, Vogiatzis G, Hernandez C, Cipolla R (2008). In: Proc. of European Conf. on Computer Vision (ECCV), pages 766–779

  7. Chang JY, Park H, Park IK, Lee KM, Lee SU (2011) Gpu-friendly multi-view stereo reconstruction using surfel representation and graph cuts. Comput Vis Image Underst 115(5):620–634

    Article  Google Scholar 

  8. Cui P, Liu Y, Wu P, Li J, Yi S (2015) An effective multiview stereo method for uncalibrated images. In: Proc. of Chinese Conference on Computer Vision, pp 124–133

  9. Deng Y, Liu Y, Dai Q, Zhang Z, Wang Y (2012) Noisy depth maps fusion for multiview stereo via matrix completion. IEEE J Sel Top Sign Proces 6(5):566–582

    Article  Google Scholar 

  10. Frahm J-M, Fite-Georgel P, Gallup D, Johnson T, Raguram R, Wu C, Jen Y-H, Dunn E, Clipp B, Lazebnik S, Pollefeys M (2010) Building rome on a cloudless day. In: Proc. of European Conf. on Computer Vision (ECCV), pages 368–381

  11. Furukawa Y, Curless B, Seitz SM, Szeliski R (2010) Towards internet-scale multi-view stereo. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp 1434–1441

  12. Furukawa Y, Ponce J (2010) Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal Mach Intell 32(8):1362–1376

    Article  Google Scholar 

  13. Goesele M, Curless B, Seitz SM (2006) Multi-view stereo revisited. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), vol 2, pp 2402–2409

  14. Goesele M, Snavely N, Curless B, Hoppe H, Seitz SM (2007) Multi-view stereo for community photo collections. In: Proc. of Intl Conf. on Computer Vision (ICCV)

  15. Heise P, Klose S, Jensen B, Knoll A (2013) Pm-huber: Patchmatch with huber regularization for stereo matching. In: Proc. of Intl Conf. on Computer Vision (ICCV)

  16. Hiep VH, Keriven R, Labatut P, Pons J-P (2009) Towards high-resolution large-scale multi-view stereo. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp 1430–1437

  17. Jancosek M, Pajdla T (2009) Segmentation based multi-view stereo Computer VisionWinterWorkshop

  18. Jancosek M, Pajdla T (2014) Exploiting visibility information in surface reconstruction to preserve weakly supported surfaces. International Scholarly Research Notices:2014

  19. Jancosek M, Shekhovtsov A, Pajdla T (2009) Scalable multi-view stereo.. In: Computer Vision Workshops, (ICCV Workshops) IEEE 12Th International Conference on IEEE, pp 1526–1533

  20. Kazhdan M, Bolitho M, Hoppe H (2006) Poisson surface reconstruction. In: Proc. of Sympdium on Geometry Processing

  21. Kolev K, Pock T, Cremers D (2010) Anisotropic minimal surfaces integrating photoconsistency and normal information for multiview stereo. In: Proc. of European Conf. on Computer Vision (ECCV), pages 538-551. Springer

  22. Kostrikov I, Horbert E, Leibe B (2014) Probabilistic labeling cost for high-accuracy multi-view reconstruction. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). IEEE

  23. Li J, Li E, Chen Y, Xu L, Zhang Y (2010) Bundled depth-map merging for multi-view stereo. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp 2769–2776

  24. Merrell P, Akbarzadeh A, Wang L, Mordohai P, Frahm J-M, Yang R, Nister D, Pollefeys M (2007) Real-time visibility-based fusion of depth maps. In: Proc. of Intl Conf. on Computer Vision (ICCV)

  25. Newcombe RA, Davison AJ (2010) Live dense reconstruction with a single moving camera. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 1498-1505. IEEE

  26. Oliva A, Torralba A (2001) Modeling the shape of the scene A holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  MATH  Google Scholar 

  27. Pons J-P, Keriven R, Faugeras O (2005) Modelling dynamic scenes by registering multi-view image sequences. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), vol 2, pp 822–827

  28. Rong G, Tan T-S (2006) Jump flooding in gpu with applications to voronoi diagram and distance transform. In: Proc. of Symposium on Interactive 3D Graphics and Games, pp 109–116

  29. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis 47:742

    Article  MATH  Google Scholar 

  30. Schning J, Gunther H (2015) Evaluation of multi-view 3D reconstruction software Computer Analysis of Images and Patterns Springer International Publishing

  31. Schroers C, Zimmer H, Valgaerts L, Bruhn A, Demetz O, Weickert J (2012) Anisotropic range image integration. Springer, Berlin Heidelberg

    Book  Google Scholar 

  32. Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp 519–528

  33. Shen S (2013) Accurate multiple view 3d reconstruction using patch-based stereo for large-scale scenes. IEEE Trans Image Process 22(5):1901–1914

    Article  MathSciNet  Google Scholar 

  34. Snavely N, Seitz SM, Szeliski R (2008) Modeling the world from internet photo collections. Int J Comput Vis 80(2):189–210

    Article  Google Scholar 

  35. Strecha C, Fransens R, Van Gool L (2004) Wide-baseline stereo from multiple views: a probabilistic account. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) pages I-552

  36. Strecha C, Fransens R, Van Gool L (2006) Combined depth and outlier estimation in multi-view stereo. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR):2394–2401

  37. Strecha C, von Hansen W, Van Gool L, Fua P, Thoennessen U (2008) On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)

  38. Sẗuhmer J, Gumhold S, Cremers D (2010) Real-time dense geometry from a handheld camera. In: Pattern Recognition, pages 11-20. Springer

  39. Tanskanen P, Kolev K, Meier L, Camposeco F, Saurer O, Pollefeys M (2013) Live metric 3d reconstruction on mobile phones. In: Proc. of Intl Conf. on Computer Vision (ICCV). IEEE

  40. Tola E, Strecha C, Fua P (2012) Efficient large scale multi-view stereo for ultra high resolution image sets. Mach Vis Appl 23(5):903–920

    Article  Google Scholar 

  41. Tylecek R (2009) Depth map fusion with camera position refinement. In: Computer Vision Winter Workshop

  42. Tylecek R, Sara R (2010) Refinement of surface mesh for accurate multiview reconstruction. The International Journal of Virtual Reality 9(1):45–54

    Google Scholar 

  43. Uh Y, Matsushita Y, Byun H (2014) ”Efficient multiview stereo by random-search and propagation.” 3D Vision (3DV), 2014 2nd International Conference on. Vol. 1 IEEE

  44. Wu C (2013) Towards Linear-time Incremental Structure From Motion. In: Proc. of Int’l Conf. on 3D Vision, IEEE

  45. Zaharescu A, Boyer E, Horaud R (2007) Transformesh: a topology-adaptive mesh-based approach to surface evolution. In: Proc. of Asian Conf. on Computer Vision (ACCV), pp 166–175

  46. Zaharescu A, Cagniart C, Ilic S, Boyer E, Horaud R (2008) Camera-clustering for multi-resolution 3-d surface reconstruction. In: Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications-M2SFA2

Download references

Acknowledgments

This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No.B0101-16-0307, Basic Software Research in Human-level Lifelong Machine Learning (Machine Learning Center))

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeran Byun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uh, Y., Byun, H. Multi-view 3D reconstruction by random-search and propagation with view-dependent patch maps. Multimed Tools Appl 75, 16597–16614 (2016). https://doi.org/10.1007/s11042-016-3621-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3621-x

Keywords

Navigation