Skip to main content
Log in

A fast and efficient fuzzy approximation-based indexing for CBIR

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Crisp index structures introduce the problem of having sharp decision boundaries which may not be found in the real life clustering problems. In real world, specifically in the CBIR context, each data may not be fully assigned to one cluster and it may partially belong to other clusters, as opposed to the crisp index structures which fully affect data to clusters according to their proximity in terms of distance in the high-dimensional vector space. Based on kernel-fuzzy C-means clustering (KFCM) mechanism, this paper presents a fast and efficient index structure to support high-dimensional indexing for both crisp and fuzzy data. The proposed index structure offers a number of advantages such as a compact and efficient fuzzy data clustering. The experimental study demonstrates the efficiency and effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. www.mit.edu/~andoni/LSH/

References

  1. http://www.cscolumbiaedu/CAVE/software/softlib/coil100php (1996)

  2. Aizerman MA, Braverman EA, Rozonoer L (1964) Theoretical foundations of the potential function method in pattern recognition learning. In: Pattern recognition learning. pp 821–837

  3. Andoni A, Indyk P (2008) Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun ACM 51(1):117–122. doi:10.1145/1327452.1327494

    Article  Google Scholar 

  4. Barranco CD, Campaña JR, Medina JM (2008) A b+-tree based indexing technique for fuzzy numerical data. Fuzzy Sets Syst 159:1431–1449

    Article  MATH  Google Scholar 

  5. Barton S, Gouet-Brunet V, Rukoz M (2011) Large scale disk-based metric indexing structure for approximate information retrieval by content. In: Proceedings of the 1st workshop on new trends in similarity search, NTSS ’11. ACM, New York, pp 2–7

  6. Bayer R, McCreight E (1972) Organization and maintenance of large ordered indexes. Acta Informatica 3:173–189

    Article  Google Scholar 

  7. Bertino E, Guglielmina C (1993) Path-index: an approach to the efficient execution of object-oriented queries. Data Knowl Eng 10(1):1–27

    Article  Google Scholar 

  8. Bertino E, Kim W (2002) Indexing techniques for queries on nested objects. Knowl Data Eng 1:196–214

    Article  Google Scholar 

  9. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer, Norwell

    Book  MATH  Google Scholar 

  10. Bosc P, Galibourg M (1989) Indexing principles for a fuzzy databases. Inf Syst 6:493–499

    Article  Google Scholar 

  11. Zadeh LA, Kacprzyk J (eds) (1992) Fuzzy logic for the management of uncertainty. Wiley, New York

    Google Scholar 

  12. Chen L, Özsu MT (2005) Robuste and fast similarity search for moving object trajectories. In: Proceedings of the 24th international conference on management of data. pp 491–502

  13. Chen T, Nakazato M, Huang TS (2002) Speeding up the similarity search in multimedia database. In: Proceedings of the 2002 IEEE international conference on multimedia and expo, ICME 2002, 26–29 August 2002, vol II. Lausanne, Switzerland, pp 509–512

  14. Cheng R, Kalashnikov DV, Prabhakar S (2004) Querying imprecise data in improving object environments. IEEE Trans Knowl Data Eng 16(9):1112–1127

    Article  Google Scholar 

  15. Chiang JH, Hao PY (2003) A new kernel-based fuzzy clustering approach: support vector clustering with cell growing. IEEE Trans Fuzzy Syst 11:518–527

    Article  Google Scholar 

  16. Comer D (1979) Ubiquitous b-tree. ACM Comput Surv 2:121–137

    Article  Google Scholar 

  17. Cui J, Zhou S, Zhao S (2007) Pcr-tree: a compression-based index structure for similarity searching in high-dimensional image databases. In: Proceedings of the fourth international conference on fuzzy systems and knowledge discovery, vol 02. FSKD ’07, pp 395–400

  18. Daoudi I, Ouatik SEA, Kharraz AE, Idrissi K, Aboutajdine D (2008) Vector approximation based indexing for high-dimensional multimedia databases. Eng Lett 16(2):210–218

    Google Scholar 

  19. Daoudi I, Idrissi K, Ouatik SE, Baskurt A, Aboutajdine D (2009) An efficient high-dimensional indexing method for content-based retrieval in large image databases. Image Commun 24(10):775–790

    Google Scholar 

  20. Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the 20th annual symposium on computational geometry. Brooklyn, New York, pp 253–262. doi:10.1145/997817.997857

  21. Faradjian A (2002) Gadt: a probability space adt for representing and querying the physical world. In: Proceedings of the 18th international conference on data engineering

  22. George R, Srikanth R, Petry FE, Buckles BP (1996) Uncertainty management issues in the object-oriented data model. IEEE Trans Fuzzy Syst 4(2):179–192

    Article  Google Scholar 

  23. Graves D, Pedrycz W (2007) Performance of kernel-based fuzzy clustering. Electron Lett 43:1445–1446

    Article  Google Scholar 

  24. Graves D, Pedrycz W (2010) Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study. Fuzzy Sets Syst 161(4):522–543

    Article  MathSciNet  Google Scholar 

  25. Gunnemann S, Kremer H, Lenhard D, Seidlm T (2011) Subspace clustering for indexing high dimensional data: a main memory index based on local reductions and individual multi-representations. In: Proceedings of the 14th international conference on extending database technology. ACM, New York, pp 237–248

  26. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD international conference on management of data, SIGMOD ’84. pp 47–57

  27. Heisterkamp DR, Peng J (2005) Kernel vector approximation files for relevance feedback retrieval in large image databases. Multimed Tools Appl 26:175–189

    Article  Google Scholar 

  28. Idrissi K, Lavoué G, Ricard J, Baskurt A (2004) Object of interest-based visual navigation, retrieval, and semantic content identification system. Comput Vis Image Underst 94(1–3):271–294. doi:10.1016/j.cviu.2003.10.014

    Article  Google Scholar 

  29. Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of dimensionality, pp 604–613. doi:10.1145/276698.276876

  30. Koyuncu M, Yazici A (2003) Ifood: an intelligent fuzzy object-oriented database architecture. IEEE Trans Knowl Data Eng 15(5):1137–1154

    Article  Google Scholar 

  31. MehtaM, Agrawal R, Rissanen J (1996) SLIQ: a fast scalable classifier for data mining. In: Apers PMG, Bouzeghoub M, Gardarin G (eds) Proceedings of the 5th international conference on extending database technology: advances in database technology (EDBT ’96). Springer-Verlag, London, pp 18–32

  32. Nello C, Colin C, John St (1998) Dynamically adapting kernels in support vector machines. In: Advances in neural information processing systems 11. MIT Press, pp 204–210

  33. Pang L, Xiao K, Liang A, Guan H (2012) A improved clustering analysis method based on fuzzy c-means algorithm by adding pso algorithm. 7208:231–242. doi:10.1007/978-3-642-28942-2_21

  34. Pedrycz W (2005) Knowledge-based clustering: from data to information granules. Wiley-Interscience

  35. Petry FE (1996) Fuzzy databases: principles and applications. In: International series in intelligent technologies. Kluwer Academic Publishers, Dordrecht, p 226

    Google Scholar 

  36. Saeid N, Amin AN, Saeid H, Abdolreza S, Farhad S (2012) Particle swarm optimization of kernelbased fuzzy c-means for hyperspectral data clustering. J Appl Remote Sens 001; 6(1):063601–063601. doi:10.1117/1.JRS.6.063601

    Article  Google Scholar 

  37. Salembier P, Sikora T (2002) Introduction to MPEG-7: multimedia content description interface, vol 9, no 3. Wiley, New York, pp 83–93

    Google Scholar 

  38. Scholkopf B, Smola A, Müller KR (1999) Kernel principal component analysis. In: Burges CJC, Smola AJ (eds) Advances in kernel methods-support vector learning. MIT Press, Cambridge, pp 327–352

    Google Scholar 

  39. Shakhnarovich G, Darrell T (2008) Nearest-neighbor methods in learning and vision: theory and practice. Pattern Anal Applic 11(2):221–222

    Article  Google Scholar 

  40. Tao Y, Yi K, Sheng C, Kalnis P (2009) Quality and efficiency in high dimensional nearest neighbor search. In: Proceedings of the 2009 ACM SIGMOD international conference on management of data, Providence

  41. Urruty T, Belkouch F, Djeraba C (2005) Kpyr: an efficient indexing method. In: Proceedings of the 2005 IEEE international conference on multimedia and expo, ICME 2005, July 6–9. Amsterdam, The Netherlands, pp 1448–1451

    Google Scholar 

  42. Weber R, Schek HJ, Blott S (1998) A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: VLDB ’98: Proceedings of the 24th international conference on very large data bases. Morgan Kaufmann Publishers Inc., San Francisco, pp 194–205

    Google Scholar 

  43. Wu Xiaohong ZJ (2006) Fuzzy principal component analysis and its kernel-based model. J Electron (China) 24:772–775

    Google Scholar 

  44. Yazici A, George R, Aksoy D (1998) Design and implementation issues in the fuzzy object-oriented data model. Inf Sci Inf Comput Sci 108:241–260

    Google Scholar 

  45. Yazici A, Ince C, Koyuncu M (2008) Food index: a multidimensional index structure for similarity-based fuzzy object oriented database models. IEEE Trans Fuzzy Syst 16(4):942–957

    Article  Google Scholar 

  46. Ye L, Hua Y (2010) The cmvai-file: an efficient approximation-based high-dimensional index structure. In: Multimedia information networking and security (MINES), MINES ’10. Nanjing, pp 710–713

  47. Ye L, Hua Y (2010) The cmvai-file: an efficient approximation-based high-dimensional index structure. In: Proceedings of the 2010 international conference on multimedia information networking and security, MINES ’10. IEEE Computer Society, Washington, pp 710–713

  48. Yih JM, Lin YH, Liu HC (2008) Fcm algorithm based on unsupervised mahalanobis distances with better initial values and separable criterion. pp 326–331. http://dl.acm.org/citation.cfm?id=1.504034.1504094

  49. Zeyu L, Shiwei T, Jing X, Jun J (2001) Modified fcm clustering based on kernel mapping. Internet Soc Opt Eng 4554:242–245

    Google Scholar 

  50. Zhang D, Chen S (2002) Fuzzy clustering unsing kernel method. In: In the 2002 international conference on control and automation, 2002. ICCA, 2002, pp 162–163

  51. Zhou S, Gan JQ (2004) Mercer kernel fuzzy c-means algorithm and prototypes of clusters. In: International data engineering and automated learning, vol 3177. pp 613–618

Download references

Acknowledgments

We are grateful to Daniel Graves and Alexandr Andoni, for providing us the source code of the KFCM and E2LSH needed to carry out this experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imane Daoudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daoudi, I., Idrissi, K. A fast and efficient fuzzy approximation-based indexing for CBIR. Multimed Tools Appl 74, 4507–4533 (2015). https://doi.org/10.1007/s11042-013-1820-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1820-2

Keywords

Navigation