Skip to main content
Log in

Modification of steel surface layer by electron beam treatment

  • Published:
Metal Science and Heat Treatment Aims and scope

Methods of scanning and diffraction electron microscopy are used for studying the morphology of fracture surfaces, the phase composition, and the structure of steel subjected to electron beam treatment. The conditions of formation of submicrocrystalline and nanocrystalline structure due to high-speed hardening that promotes multiple growth in the hardness of the surface layer are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Rykalin, A. A. Uglov, and A. N. Kokora, Laser Treatment of Materials [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

  2. A. M. Prokhorov, “Physical principles of treatment of materials by pulse laser plasma,” in: Scientific Foundations of Progressive Technology [in Russian], Mashinostroenie, Moscow (1982), pp. 164 – 211.

    Google Scholar 

  3. J. Pote, G. Fotee, and D. Jacobson (eds.), Surface Modifying and Alloying by Laser, Ion, and Electron Beams [Russian translation], Mashinostroenie, Moscow (1987).

    Google Scholar 

  4. A. A. Shipko, I. L. Pobol’, and I. G. Urban, Hardening of Steels and Alloys with the Use of Electron Beam Heating [in Russian], Nauka i Tekhinka, Minsk (1995).

    Google Scholar 

  5. N. A. Gribkov, F. I. Grigor’ev, B. A. Kalin, et al., Promising Radiation Beam Technologies of Treatment of Materials [in Russian], Krugly Stol, Moscow (2001).

    Google Scholar 

  6. K. K. Kadyrzhanov, F. F. Komarov, A. D. Pogrebnyuk, et al., Ion Beam and Ion Plasma Modifying of Materials [in Russian], Izd. MGU, Moscow (2005).

    Google Scholar 

  7. M. L. Bernshtein, L. M. Kaputkina, and S. D. Prokoshkin, Tempering of Steel [in Russian], MISiS, Moscow (1997).

    Google Scholar 

  8. V. Engelko, G. Mueller, and H. Bluhm, “Influence of particle fluxes from target on characteristics of intense electron beams,” Vacuum, 62(2 – 3), 97 – 103 (2001).

    Article  CAS  Google Scholar 

  9. H. E. Ozur, D. I. Proskurovskii, and K. V. Karlik, “A source of wide-aperture low-power strong-current electron beams with plasma anode based on reflective discharge,” Prav. Tekh. Ékspl., No. 6, 58 – 65 (2005).

  10. V. Rotshtein, Yu. Ivanov, and A. Markov, “Surface treatment of materials with low-energy high-current electron beams,” in: Y. Pauleau (ed.), Materials Surface Processing by Direct Energy Techniques, Elsevier (2006), Chapter 6, pp. 205 – 240.

  11. Yu. F. Ivanov and N. N. Koval’, “Low-energy electron beams of submillisecond duration: creation and some aspects of use in the field of materials engineering,” in: A. I. Potekaev (ed.), Structure and Properties of Promising Metallic Materials [in Russian], Izd. NTL, Tomsk (2007), Chapter 13, pp. 345 – 382.

    Google Scholar 

  12. P. Hirsch, A. Howie, and R. Nicholson, et al., Electron Microscopy of Thin Crystals [in Russian translation], Mir, Moscow (1968).

    Google Scholar 

  13. S. S. Gorelik, Recrystallization of Metals and Alloys [in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  14. O. V. Sosnin, M. P. Ivakhin, V. V. Kovalenko, et al., “Regular features and mechanisms of the evolution of structure-andphase state of hardened carbon steel due to electrostimulated fatigue,” Izv. Vuzov, Fiz., No. 9, 53 – 60 (2004).

  15. V. A. Klimenov, Yu. F. Ivanov, and O. B. Perevalova, “Formation of structure and mechanisms of hardening of surface layers of stainless steel treated with low-energy strong-current electron beam,” Fiz. Khim. Obrab. Mater., No. 2, 41 – 47 (2001).

  16. Yu. F. Ivanov and É. V. Kozlov, “Volume and surface hardening of structural steel: morphological analysis of structure,” Izv. Vuzov, Fiz., 45(3), 5 – 23 (2002).

    Google Scholar 

  17. Yu. F. Ivanov, A. B. Markov, M. P. Kashchenko, et al., “Critical grain size for nucleation of α-martensite,” Zh. Tekh. Fiz., 65(3), 98 – 102 (1995).

    CAS  Google Scholar 

  18. V. G. Kurdyumov, L. M. Utevskii, and R. I. Éntin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  19. M. L. Bernshtein, V. A. Zaimovskii, and L. M. Kaputkina, Thermomechanical Treatment of Steel [in Russian], Metallurgiya, Moscow (1983).

    Google Scholar 

  20. Yu. F. Ivanov, “Effect of process parameters on size homogeneity of lath martensite,” Fiz. Met. Metalloved., No. 9, 57 – 63 (1992).

  21. A. R. Mader and G. Krauss, “The effect of morphology on the strength of lath martensite,” in: Second Int. Conf. on Strength of Met. and Alloys (1970), Vol. 3. pp. 822 – 823.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 12, pp. 10 – 16, December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, Y.F., Kolubaeva, Y.A., Konovalov, S.V. et al. Modification of steel surface layer by electron beam treatment. Met Sci Heat Treat 50, 569–574 (2008). https://doi.org/10.1007/s11041-009-9101-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-009-9101-4

Keywords

Navigation