Skip to main content
Log in

Weak Solutions of the Cohomological Equation on \({\mathbb {R}}^{2}\) for Regular Vector Fields

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

In a recent article (De Leo, R., Ann. Glob. Anal. Geom., 39, 3, 231–248 2011), we studied the global solvability of the so-called cohomological equation L ξ f = g in \(C^{\infty }(\mathbb {R}^{2})\), where ξ is a regular vector field on the plane and L ξ the corresponding Lie derivative operator. In a joint article with T. Gramchev and A. Kirilov (2011), we studied the existence of global \(L^{1}_{loc}\) weak solutions of the cohomological equation for planar vector fields depending only on one coordinate. Here we generalize the results of both articles by providing explicit conditions for the existence of global weak solutions to the cohomological equation when ξ is intrinsically Hamiltonian or of finite type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A., John, J.F.: Sobolev Spaces, volume 140 of Pure and Applied Mathematics. Academic Press (2003)

  2. Arnold, V.I.: Lectures on Partial Differential Equations. Springer Verlag (2006)

  3. Cappiello, M., Gourdin, D., Gramchev, T.: Cauchy problems for hyperbolic systems in \({\mathbb {R}}^{n}\) with irregular principal symbol in time and for \(|x|\to \infty \). J. Diff. Eqs. 250(5), 2642–2642 (2011)

    Article  MathSciNet  Google Scholar 

  4. De Leo, R.: On the cohomological equation on \(\mathbb {R}^{2}\) for regular vector fields. Ann. Glob. Anal. Geom. 39(3), 231–248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Leo, R., Gramchev, T., Kirilov, A.: Global solvability in functional spaces for smooth nonsingular vector fields in the plane. In: Rodino, L., Wong, M.W., Zhu, H. (eds.) Pseudo-Differential Operators: Analysis, Applications and Computations, volume 214 of Operator Theory: Advances and Applications. Springer (2011)

  6. Demengel, F., Demengel, G.: Functional spaces for the Theory of Elliptic Partial Differential Equations. Springer (2012)

  7. Gourdin, D., Gramchev, T.: Problème de cauchy global pour des systèmes hyperboliques á coefficients superlinéaire lorsque \(|x|\to +\infty \). C. R. Acad. Sci. Paris 347(1–2), 49–54 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haefliger, A., Reeb, G.: Variétés (non séparées) a une dimension et structures feuilletées du plan. Enseignement Math. 3, 107–125 (1957)

    MathSciNet  MATH  Google Scholar 

  9. Kaplan, W.: Regular curve-families filling the plane. Duke Math. J. 7(1), 154–185 (1940)

    Article  MathSciNet  Google Scholar 

  10. Markus, L.: Global structure of ordinary differential equations on the plane. Trans. AMS 76(1), 127–148 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  11. Markus, L.: Topological types of polynomial differential equations. Trans. AMS 171, 157–178 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edwin, E.M.: Geometric Topology in Dimensions 2 and 3, volume 47 of GTM. Springer Verlag (1977)

  13. Muller, M.P.: An analytic foliation of the plane without weak first integral of class C 1. Bol. Soc. Mex. 21, 1–5 (1976)

    MATH  Google Scholar 

  14. Muller, M.P.: Quelques propriétés des feuilletages polynomiaux du plan. Bol. Soc. Mex. 21, 6–14 (1976)

    MATH  Google Scholar 

  15. Rudyak, Y.B. Piecewise linear structures on topological manifolds. 2001. arXiv:math.AT/0105047

  16. Schecter, S., Singer, M.F.: Planar polynomial foliations. Proc. AMS 79(4), 649–656 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wazewski, T.: Sur un probléme de caractére integral relatif a l’equation d z/d x + q(x, y)d z/d y = 0. Math. Cluj. 8, 103–116 (1934)

    Google Scholar 

  18. Weiner, J.L.: First integrals for a direction field on a simply connected plane domain. Pac. J. Math. 132(1), 195–208 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto De Leo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Leo, R. Weak Solutions of the Cohomological Equation on \({\mathbb {R}}^{2}\) for Regular Vector Fields. Math Phys Anal Geom 18, 18 (2015). https://doi.org/10.1007/s11040-015-9187-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-015-9187-4

Keywords

Mathematics Subject Classification (2010)

Navigation