Abstract
We consider holomorphic deformations of Fuchsian systems parameterized by the pole loci. It is well known that, in the case when the residue matrices are non-resonant, such a deformation is isomonodromic if and only if the residue matrices satisfy the Schlesinger system with respect to the parameter. Without the non-resonance condition this result fails: there exist non-Schlesinger isomonodromic deformations. In the present article we introduce the class of the so-called isoprincipal deformations of Fuchsian systems. Every isoprincipal deformation is also an isomonodromic one. In general, the class of the isomonodromic deformations is much richer than the class of the isoprincipal deformations, but in the non-resonant case these classes coincide. We prove that a deformation is isoprincipal if and only if the residue matrices satisfy the Schlesinger system. This theorem holds in the general case, without any assumptions on the spectra of the residue matrices of the deformation. An explicit example illustrating isomonodromic deformations, which are neither isoprincipal nor meromorphic with respect to the parameter, is also given.
Similar content being viewed by others
References
Birkhoff, G. D.: The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations, Proc. Amer. Acad. Arts Sci. 49 (1913), 521–568. Reprinted in: [2], 259–306.
Birkhoff, G. D.: Collected Mathematical Papers, Vol. I, American Mathematical Society, New York, 1950, pp. i–xi, 754 pp.
Boalch, P.: Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001), 137–205.
Bolibruch, A.: On isomonodromic deformations of Fuchsian systems, J. Dynam. Control Systems 3(4) (1997), 589–604.
Fuchs, L.: Gesammelte Mathematische Werke. Band 3, (Herausgegeben by R. Fuchs und L Schlesinger). Mayer & Müller, Berlin, 1909.
Fuchs, L.: Zur Theorie der linearen Differentialgleichungen, Sitzungsberichte der K. preuss. Akademie der Wissenschaften zu Berlin. Einleitung und No. 1–7, 1888, S. 1115–1126; No. 8–15, 1888, S.1273–1290; No. 16–21, 1889, S. 713–726; No. 22–31, 1890, S. 21–38. Reprinted in: [11], S. 1–68.
Fuchs, L.: Über lineare Differentialgleichungen, welche von Parametern unabhngige substitutionsgruppen besitzen, Sitzungsberichte der K. preuss. Akademie der Wissenschaften zu Berlin. 1892, S. 157–176. Reprinted in: [11], S. 117–139.
Fuchs, L.: Über lineare Differentialgleichungen, welche von Parametern unabhngige Substitutionsgruppen besitzen, Sitzungsberichte der K. preuss. Akademie der Wissenschaften zu Berlin. Einleitung und No. 1–4, 1893, S. 975–988; No. 5–8, 1894, S. 1117–1127. Reprinted in: [11], S. 169–195.
Fuchs, L.: Über die Abhängigkeit der Lösungen einer linearen differentialgleichung von den in den Coefficienten auftretenden Parametren, Sitzungsberichte der K. preuss. Akademie der Wissenschaften zu Berlin. 1895, S. 905–920. Reprinted in: [11], S. 201–217.
Fuchs, R.: Sur quelquea équations différentielles linéares du second ordre, C. R. Acad. Sci., Paris 141 (1905), 555–558.
Fuchs, R.: Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gegebenen wesentlich singulären Stellen, Math. Ann. 63 (1907), 301–321.
Garnier, R.: Sur une classe d'équations différentielles dont les intégrales générales ont leurs points critiques fixes, C. R. Acad. Sci., Paris 151 (1910), 205–208.
Hurewich, W. and Wallman, H.: Dimension Theory, Princeton University Press, Princeton, 1941.
Iwasaki, K., Kimura, H., Shimomura, S. and Yoshida, M.: From Gauß to Painlevé, (A Modern Theory of Special Functions) Aspects of Mathematics: E; vol. 16. Friedr. Vieweg & Sohn, Braunschweig, 1991, xii+347 pp.
Its, A. R. and Novokshenov, V. Yu.: The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lect. Notes in Math, 1191, Springer, Berlin-New York, 1986.
Katsnelson, V.:, Fuchsian differential systems related to rational matrix fuctions in general position and the joint system realization, in: L. Zalcman (ed.), Israel Mathematical Conference Proceedings, Vol. 11 (1997), Proceedings of the Ashkelon Workshop on Complex Function Theory (May 1996), pp. 117–143.
Katsnelson, V.: Right and left joint system representation of a rational matrix function in general position (System representation theory for dummies), in: D. Alpay and V. Vinnikov (eds.), Operator Theory, System Theory and Related Topics (The Moshe Livšic anniversary volume. Proceedings of the Conference on Operator Theory held at Ben-Gurion University of the Negev, Beer-Sheva and in Rehovot, June 29–July 4, 1997), (Operator Theory: Advances and Applications, 123), Birkhäuser Verlag, Basel, 2001, pp. 337–400.
Katsnelson, V. and Volok, D.: Rational Solutions of the Schlesinger System and Isoprincipal Deformations of Rational Matrix Functions I, in: J. A. Ball, J. W. Helton, M. Klaus and L. Rodman (eds.), Current Trends in Operator Theory and its Applications, (Operator Theory: Advances and Applications, 149), Birkhäuser Verlag, Basel, 2004, pp. 291–348.
Katsnelson, V. and Volok, D.: Rational Solutions of the Schlesinger System and Isoprincipal Deformations of Rational Matrix Functions I, arXiv.org e-print archive: http://arxiv.org, math. CA/0304108.
Katsnelson, V. and Volok, D.: Rational Solutions of the Schlesinger System and Isoprincipal Deformations of Rational Matrix Functions II, in: D. Alpay, and V. Vinnikov (eds.), Operator Theory, System Theory And Scattering Theory: Multidimensional Generalizations, (Operator Theory: Advances and Applications, 157), Birkhäuser Verlag, Basel, 2005, pp. 165–203.
Katsnelson, V. and Volok, D.: Rational Solutions of the Schlesinger System and Isoprincipal Deformations of Rational Matrix Functions II, arXiv.org e-print archive: http://arxiv.org, math. CA/0406489.
Malgrange, B.: Sur les déformations isomonodromiques. I. Singularites regulieres, (In French) [On isomonodromic deformations. I. Regular singularities.] pp. 401–426 in [31].
Malgrange, B.: Sur les deformations isomonodromiques. II. Singularites irregulieres, (In French) [On isomonodromic déformations. II. Irregulare singularities.] pp. 427–438 in [31].
Mathématique et Physique. (Séminaire de l'Ecole Normale Supérieure 1979–1982), (In French). [Mathematics and Physics. (Seminar of Ecole Normale Supérieure 1979–1982.)] in: L. Boutet de Monvel, A. Douady and J.-L. Verdier (eds.), Progr. in Math. 37, Birkhäuser, Boston Basel Stuttgart, 1983.
Miwa, T.: Painleve' property of monodromy preserving deformation equations and the analyticity of \(\tau\) functions, Publ. Res. Inst. Math. Sci. 17(2) (1981), 703–721.
Schlesinger, L.: Sur la détermination des fonctions algébriques uniformes sur une surface de Riemann donnée, (French.) Ann. Sci. École Norm. Sup. Sér. 3 20 (1903), 331–347.
Schlesinger, L.: Über die Lösungen gewisser linearer Differentialgleichungen als Funktionen der singulären Punkte, J. Reine Angew. Math. 129 (1905), 287–294.
Schlesinger, L.: Vorlesungen über lineare Differentialgleichungen, Leipzig und Berlin, 1908.
Schlesinger, L.: Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten, J. Reine Angew. Math. 141 (1912), 96–145.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to the centenary of the Schlesinger system
The research of Victor Katsnelson was supported by the Minerva Foundation.
Rights and permissions
About this article
Cite this article
Katsnelson, V., Volok, D. Deformations of Fuchsian Systems of Linear Differential Equations and the Schlesinger System. Math Phys Anal Geom 9, 135–186 (2006). https://doi.org/10.1007/s11040-005-9004-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11040-005-9004-6