Skip to main content
Log in

Silencing of the T-type voltage-gated calcium channel α1 subunit by fungus-mediated RNAi altered the structure of F-actin and caused defective behaviors in Ditylenchus destructor

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

T-type calcium channels, characterized as low-voltage activated (LVA) calcium channels, play crucial physiological roles across a wide range of tissues, including both the neuronal and nonneuronal systems. Using in situ hybridization and RNA interference (RNAi) techniques in vitro, we previously identified the tissue distribution and physiological function of the T-type calcium channel α1 subunit (DdCα1G) in the plant-parasitic nematode Ditylenchus destructor.

Methods and results

To further characterize the functional role of DdCα1G, we employed a combination of immunohistochemistry and fungus-mediated RNAi and found that DdCα1G was clearly distributed in stylet-related tissue, oesophageal gland-related tissue, secretory-excretory duct-related tissue and male spicule-related tissue. Silencing DdCα1G led to impairments in the locomotion, feeding, reproductive ability and protein secretion of nematodes. To confirm the defects in behavior, we used phalloidin staining to examine muscle changes in DdCα1G-RNAi nematodes. Our observations demonstrated that defective behaviors are associated with related muscular atrophy.

Conclusion

Our findings provide a deeper understanding of the physiological functions of T-type calcium channels in plant-parasitic nematodes. The T-type calcium channel can be considered a promising target for sustainable nematode management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The data of the present study are available from the corresponding author upon reasonable request.

References

  1. Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De Smet P, Travers M, Tovey SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P (2001) Calcium signalling–an overview. Semin Cell Dev Biol 12:3–10. https://doi.org/10.1006/scdb.2000.0211

    Article  CAS  PubMed  Google Scholar 

  2. Abdulla FA, Smith PA (1997) Nociceptin inhibits T-type Ca2+ channel current in rat sensory neurons by a G-protein-independent mechanism. J Neuroscience: Official J Soc Neurosci 17:8721–8728. https://doi.org/10.1523/jneurosci.17-22-08721.1997

    Article  CAS  Google Scholar 

  3. Artalejo CR, Adams ME, Fox AP (1994) Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells. Nature 367:72–76. https://doi.org/10.1038/367072a0

    Article  CAS  PubMed  Google Scholar 

  4. Neely A, Hidalgo P (2014) Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Front Physiol 5:209. https://doi.org/10.3389/fphys.2014.00209

    Article  PubMed Central  PubMed  Google Scholar 

  5. Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci USA 100:5543–5548. https://doi.org/10.1073/pnas.0935295100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161. https://doi.org/10.1152/physrev.00018.2002

    Article  CAS  PubMed  Google Scholar 

  7. Weiss N, Zamponi GW (2024) The T-type calcium channelosome, Pflugers Archiv: European journal of physiology, 476. 163–177. https://doi.org/10.1007/s00424-023-02891-z

  8. Klugbauer N, Marais E, Lacinová L, Hofmann F (1999) A T-type calcium channel from mouse brain. Pflug Arch: Eur J Physiol 437:710–715. https://doi.org/10.1007/s004240050836

    Article  CAS  Google Scholar 

  9. Steger KA, Shtonda BB, Thacker C, Snutch TP, Avery L (2005) The C. Elegans T-type calcium channel CCA-1 boosts neuromuscular transmission. J Exp Biol 208:2191–2203. https://doi.org/10.1242/jeb.01616

    Article  CAS  PubMed  Google Scholar 

  10. Shtonda B, Avery L (2005) CCA-1, EGL-19 and EXP-2 currents shape action potentials in the Caenorhabditis elegans pharynx. J Exp Biol 208:2177–2190. https://doi.org/10.1242/jeb.01615

    Article  CAS  PubMed  Google Scholar 

  11. Zang KE, Ho E, Ringstad N (2017) Inhibitory peptidergic modulation of C. Elegans serotonin neurons is gated by T-type calcium channels, eLife. 6:e22771. https://doi.org/10.7554/eLife.22771

  12. Ye S, Zeng R, Zhou J, An M, Ding Z (2020) Molecular characterization of Ditylenchus destructor voltage-gated calcium channel α1 subunits and analysis of the effect of their knockdown on nematode activity. Biochimie 171–172. https://doi.org/10.1016/j.biochi.2020.02.010

  13. Wang X, Huang S, Zheng C, Ge W, Wu C, Tse YC (2020) RSU-1 maintains Integrity of Caenorhabditis elegans Vulval muscles by regulating α-Actinin, G3 (Bethesda, Md). 10:2507–2517. https://doi.org/10.1534/g3.120.401185

  14. Gieseler K, Qadota H, Benian GM (2017) Development, structure, and maintenance of C. Elegans body wall muscle. WormBook: Online Rev C Elegans Biology 2017:1–59. https://doi.org/10.1895/wormbook.1.81.2

    Article  Google Scholar 

  15. Ryss A, Petrov AA (2021) Muscles of the male and female copulatory organs of Bursaphelenchus mucronatus and Chiloplacus sp. (Nematoda: Rhabditida), Journal of nematology, 53 e2021-2107, https://doi.org/10.21307/jofnem-2021-107

  16. Pollard T.D., Cooper J.A. (2009) Actin, a central player in cell shape and movement. Sci (New York N Y) 326:1208–1212. https://doi.org/10.1126/science.1175862

  17. Rotty JD, Bear JE (2014) Competition and collaboration between different actin assembly pathways allows for homeostatic control of the actin cytoskeleton. Bioarchitecture 5:27–34. https://doi.org/10.1080/19490992.2015.1090670

  18. Scipion CPM, Ghoshdastider U, Ferrer FJ, Yuen TY, Wongsantichon J, Robinson RC (2018) Structural evidence for the roles of divalent cations in actin polymerization and activation of ATP hydrolysis. Proc Natl Acad Sci USA 115:10345–10350. https://doi.org/10.1073/pnas.1806394115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Shaw JE, Koleske AJ (2021) Functional interactions of ion channels with the actin cytoskeleton: does coupling to dynamic actin regulate NMDA receptors? J Physiol 599:431–441. https://doi.org/10.1113/jp278702

    Article  CAS  PubMed  Google Scholar 

  20. Gheysen G, Vanholme B (2007) RNAi from plants to nematodes. Trends Biotechnol 25:89–92. https://doi.org/10.1016/j.tibtech.2007.01.007

    Article  CAS  PubMed  Google Scholar 

  21. Lilley CJ, Davies LJ, Urwin PE (2012) RNA interference in plant parasitic nematodes: a summary of the current status. Parasitology 139:630–640. https://doi.org/10.1017/s0031182011002071

    Article  CAS  PubMed  Google Scholar 

  22. Ding S, Wang D, Xu C, Yang S, Cheng X, Peng X, Chen C, Xie H (2021) A new fungus-mediated RNAi method established and used to study the fatty acid and retinol binding protein function of the plant-parasitic nematode Aphelenchoides Besseyi. RNA Biol 18:1424–1433. https://doi.org/10.1080/15476286.2020.1852779

    Article  CAS  PubMed  Google Scholar 

  23. Ishibashi N, Takayama S, Kondo E (2005) Propagation and feeding behavior of the mycetophagous nematode, Aphelenchus avenue, on four species of soil fungi. Japanese J Nematology 35:13–19. https://doi.org/10.3725/JJN1993.35.1_13

    Article  Google Scholar 

  24. Lim FH, Rasid OA, Idris AS, As’wad AWM, Vadamalai G, Parveez GKA, Wong MY (2021) Correction to: enhanced polyethylene glycol (PEG)-mediated protoplast transformation system for the phytopathogenic fungus, Ganoderma boninense, Folia Microbiologica. 66:877. https://doi.org/10.1007/s12223-021-00888-8

  25. Lv W, Wang C, Yang N, Que Y, Talbot NJ, Wang Z (2017) Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium Graminearum. Sci Rep 7:11062. https://doi.org/10.1038/s41598-017-11640-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wang M, Wang D, Zhang X, Wang X, Liu W, Hou X, Huang X, Xie B, Cheng X (2016) Double-stranded RNA-mediated interference of dumpy genes in Bursaphelenchus xylophilus by feeding on filamentous fungal transformants. Int J Parasitol 46:351–360. https://doi.org/10.1016/j.ijpara.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  27. Lim F-H, Rasid OA, Idris AS, As’wad AWM, Vadamalai G, Parveez GKA, Wong M-Y (2021) Enhanced polyethylene glycol (PEG)–mediated protoplast transformation system for the phytopathogenic fungus, Ganoderma boninense, Folia Microbiologica. 66:677–688. https://doi.org/10.1007/s12223-021-00852-6

  28. WHITEHEAD AG, HEMMING JR (1965) A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann Appl Biol 55:25–38. https://doi.org/10.1111/j.1744-7348.1965.tb07864.x

    Article  Google Scholar 

  29. Schaad NW, Walker JT (1975) The use of density-gradient centrifugation for the purification of Eggs of Meloidogyne spp. J Nematology 7:203–204

    CAS  Google Scholar 

  30. Gauberg J, Abdallah S, Elkhatib W, Harracksingh AN, Piekut T, Stanley EF, Senatore A (2020) Conserved biophysical features of the CaV2 presynaptic Ca2+ channel homologue from the early-diverging animal Trichoplax adhaerens. J Biol Chem 295:18553–18578. https://doi.org/10.1074/jbc.RA120.015725

    Article  CAS  PubMed  Google Scholar 

  31. Hamada W, Reignault P, Bompeix G, Boccara M (1994) Transformation of Botrytis cinerea with the hygromycin B resistance gene, hph, current genetics. 26:251–255. https://doi.org/10.1007/bf00309556

  32. Cenis JL (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res 20:2380–2380. https://doi.org/10.1093/nar/20.9.2380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  34. Schroeder NE, Macguidwin AE (2007) Incorporation of a fluorescent compound by live Heterodera glycines. J Nematology 39:43–49

    CAS  Google Scholar 

  35. An M, Chen X, Yang Z, Zhou J, Ye S, Ding Z (2022) Co-silencing of the Voltage-gated Calcium Channel β subunit and high-voltage activated α(1) subunit by dsRNA soaking resulted in enhanced defects in Locomotion, Stylet Thrusting, Chemotaxis, protein secretion, and Reproduction in Ditylenchus destructor. Int J Mol Sci 23. https://doi.org/10.3390/ijms23020784

  36. Chen X, An M, Ye S, Yang Z, Ding Z (2022) The α(2)δ Calcium Channel Subunit Accessorily and independently affects the Biological function of Ditylenchus destructor. Int J Mol Sci 23. https://doi.org/10.3390/ijms232112999

  37. Ono S, Imaging of Actin Cytoskeleton in the Nematode Caenorhabditis elegans, Methods in molecular biology (, Clifton NJ (2022) 2364 149–158, https://doi.org/10.1007/978-1-0716-1661-1_7

  38. Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42. https://doi.org/10.2307/3001478

    Article  Google Scholar 

  39. E. BY, Ultrastructure of the stomatal region of the juvenile stage of the soybean cyst nematode, Heterodera glycines. Proc Helminthol Soc Wash, 50 (1983) 43–61

  40. Decraemer W, Hunt DJ (2006) Structure and classification, Plant Nematology, 1. 3–32. https://doi.org/10.1079/9781780641515.000

  41. Thapa S, Patel JA, Reuter-Carlson U, Schroeder NE (2017) Embryogenesis in the parasitic nematode Heterodera glycines is independent of host-derived hatching stimulation. BMC Dev Biol 17:2. https://doi.org/10.1186/s12861-016-0144-7

    Article  PubMed Central  PubMed  Google Scholar 

  42. Anderson MP, Mochizuki T, Xie J, Fischler W, Manger JP, Talley EM, Scammell TE, Tonegawa S (2005) Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc Natl Acad Sci USA 102:1743–1748. https://doi.org/10.1073/pnas.0409644102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Giordanetto F, Knerr L, Wållberg A (2011) T-type calcium channels inhibitors: a patent review, Expert opinion on therapeutic patents. 21:85–101. https://doi.org/10.1517/13543776.2011.536532

  44. Ono S, Ono K (2020) Two Caenorhabditis elegans calponin-related proteins have overlapping functions that maintain cytoskeletal integrity and are essential for reproduction. J Biol Chem 295:12014–12027. https://doi.org/10.1074/jbc.RA120.014133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Simms BA, Zamponi GW (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82:24–45. https://doi.org/10.1016/j.neuron.2014.03.016

    Article  CAS  PubMed  Google Scholar 

  46. Oertner TG, Matus A (2005) Calcium regulation of actin dynamics in dendritic spines. Cell Calcium 37:477–482. https://doi.org/10.1016/j.ceca.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  47. Schell MJ, Irvine RF (2006) Calcium-triggered exit of F-actin and IP3 3-kinase A from dendritic spines is rapid and reversible. Eur J Neurosci 24:2491–2503. https://doi.org/10.1111/j.1460-9568.2006.05125.x

    Article  PubMed  Google Scholar 

  48. Wang Q, Chen M, Schafer NP, Bueno C, Song SS, Hudmon A, Wolynes PG, Waxham MN, Cheung MS (2019) Assemblies of calcium/calmodulin-dependent kinase II with actin and their dynamic regulation by calmodulin in dendritic spines. Proc Natl Acad Sci USA 116:18937–18942. https://doi.org/10.1073/pnas.1911452116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20:847–854. https://doi.org/10.1016/s0896-6273(00)80467-5

    Article  CAS  PubMed  Google Scholar 

  50. Zheng JQ (2000) Turning of nerve growth cones induced by localized increases in intracellular calcium ions. Nature 403:89–93. https://doi.org/10.1038/47501

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31872038), Natural Science Foundation of Hunan Province (Grant No.2022JJ30302), the National Key R&D Program of China (No.2023YFD1400013).

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31872038), Natural Science Foundation of Hunan Province (Grant No.2022JJ30302), the National Key R&D Program of China (No.2023YFD1400013).

Author information

Authors and Affiliations

Authors

Contributions

Shan Ye, Zhong Ding, Zhuhong Yang and Deliang Peng designed the research. Jiahao Yang, Siyu Zhou and Ziqi Yang performed the experiments. Xuqi Shi and Haoran Liu performed the data analysis. Jiahao Yang, Zhong Ding and Shan Ye wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zhong Ding or Shan Ye.

Ethics declarations

Ethical approval

The study did not involve human participants and/or animals.

Consent for publication

All authors give their consent to publish.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhou, S., Yang, Z. et al. Silencing of the T-type voltage-gated calcium channel α1 subunit by fungus-mediated RNAi altered the structure of F-actin and caused defective behaviors in Ditylenchus destructor. Mol Biol Rep 51, 673 (2024). https://doi.org/10.1007/s11033-024-09626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09626-y

Keywords