Skip to main content
Log in

Phenotypic variation seems not to be associated with the genetic profile in Zygopetalum (Orchidaceae): a case study of a high-elevation rocky complex

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Hybridization associated with polyploidy studies is rare in the tropics. The genus Zygopetalum (Orchidaceae) was investigated here as a case study of Neotropical plants. In the rocky highlands of the Ibitipoca State Park (ISP), southeast Brazil, individuals with intermediate colors and forms between the species Z. maculatum and Z. triste were commonly identified.

Methods and results

Chromosomal analysis and DNA quantity showed a uniform population. Regardless of the aspects related to the color and shape of floral structures, all individuals showed 2n = 96 chromosomes and an average of 14.05 pg of DNA. Irregularities in meiosis associated with chromosome number and C value suggest the occurrence of polyploidy. The genetic distance estimated using ISSR molecular markers revealed the existence of genetic variability not related to morphological clusters. Morphometric measurements of the flower pieces revealed that Z. maculatum shows higher variation than Z. triste although lacking a defined circumscription.

Conclusion

The observed variation can be explained by the polyploid and phenotypic plasticity resulting from the interaction of the genotypes with the heterogeneous environments observed in this habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Datasets generated during this research are available through the corresponding author upon reasonable request.

References

  1. Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:37

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  CAS  PubMed  Google Scholar 

  3. Albert VA, Barbazuk WB, de Pamphilis CW, Der JP, Leebens-Mack J, Ma H, Palmer JD et al (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089

    Article  Google Scholar 

  4. Padilla-García N, Šrámková G, Záveská E, Šlenker M, Clo J, Zeisek V, Lučanová M, Rurane I, Kolář F, Marhold K (2023) The importance of considering the evolutionary history of polyploids when assessing climatic niche evolution. J Biogeogr 50:86–100

    Article  Google Scholar 

  5. Rice A, Šmarda P, Novosolov M, Drori M et al (2019) The global biogeography of polyploid plants. Nat Ecol Evol 3:265–273

    Article  PubMed  Google Scholar 

  6. Flora do Brasil (2020) Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/. Acesso em 21 Jan 2022

  7. Oliveira U, Soares-Filho BS, Paglia AP et al (2017) Biodiversity conservation gaps in the Brazilian protected areas. Sci Rep 7:9141

    Article  PubMed  PubMed Central  Google Scholar 

  8. Silveira FAO, Negreiros D, Barbosa NPU et al (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil 403(1):129–152

    Article  CAS  Google Scholar 

  9. Mucina L (2017) Vegetation of Brazilian campos rupestres on siliceous substrates and their global analogues. Flora 238:11–23

    Article  Google Scholar 

  10. Morellato LPC, Silveira FAO (2018) Plant life in campo rupestre: new lessons from an ancient biodiversity hotspot. Flora 238:1–10

    Article  Google Scholar 

  11. Alves RJV, Kolbek J (2010) Can campo rupestre vegetation be floristically delimited based on vascular plant genera? Plant Ecol 207:67–79

    Article  Google Scholar 

  12. Forzza RC, Menini Neto L, Salimena FRG, Zappi D (2013) Capítulo 6: Fanerógamas do Parque Estadual do IBitipoca e suas relações florísticas com outras áreas com campo rupestre de Minas Gerais. In: Forzza RC, Menini Neto L, Salimena FRG, Zappi D (eds) Flora do Parque Estadual do Ibitipoca e seu entorno. Editora UFJF, Juiz de Fora, pp 153–291

    Google Scholar 

  13. Gustafsson ALS, Verola CF, Antonelli A (2010) Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae). BMC Evol Biol 10:177

    Article  PubMed  PubMed Central  Google Scholar 

  14. Borba EL, Funch RR, Ribeiro PL, Smidt EC, Silva-Pereira V (2007) Demography, genetic and morphological variability of the endangered Sophronitis sincorana (Orchidaceae) in the Chapada Diamantina, Brazil. Plant Syst Evol 267:129–146

    Article  Google Scholar 

  15. Swartz O (1800) Afhandling om Orchidernes Släegter och deras systematiska indelning. K Vet Akad Handl 21:115–139

    Google Scholar 

  16. Freudenstein JV, Chase MW (2015) Phylogenetic relationships in Epidendroideae (Orchidaceae), one of the great flowering plant radiations: progressive specialization and diversification. Ann Bot 115:665–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leal BS, Chaves CJ, Koehler S, Borba EL (2016) When hybrids are not hybrids: a case study of a putative hybrid zone between Cattleya coccinea and C. brevipedunculata (Orchidaceae). Bot J Linn Soc 181:621–639

    Article  Google Scholar 

  18. Stebbins GL (1974) Flowering plants. Evolution above the species level. Arnold, London, p 399

    Google Scholar 

  19. Soltis PS, Marchant DB, Van de Peer Y, Soltis DE (2015) Polyploidy and genome evolution in plants. Curr Opin Genet Dev 35:119–125

    Article  CAS  PubMed  Google Scholar 

  20. Félix LP, Guerra M (2005) Basic chromosome number of terrestrial orchids. Plant Syst Evol 254:131–148

    Article  Google Scholar 

  21. Félix LP, Guerra M (2010) Variation in chromosome number and the basic number of subfamily Epidendroideae (Orchidaceae). Bot J Linn Soc 163:234–278

    Article  Google Scholar 

  22. Hoehne FC (1953) Zygopetalum. Flora Bras 12:1–12

    Google Scholar 

  23. Menini Neto NL, Alves RJV, Barros F, Forzza RC (2007) Orchidaceae do Parque Estadual de Ibitipoca, MG, Brasil. Acta Bot Bras 21:687–696

    Article  Google Scholar 

  24. Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridization? CRC Crit Rev Plant Sci 12:213–241

    CAS  Google Scholar 

  25. Solano R, Huerta-Espinoza H, Cruz-García G, Ortizriveros F (2019) A new natural hybrid in the genus Laelia (Orchidaceae) from Oaxaca, Mexico. Phytotaxa 402(5):232–240

    Article  Google Scholar 

  26. Scopece G, Palma-Silva C, Cafasso D, Lexer C, Cozzolino S (2020) Phenotypic expression of floral traits in hybrid zones provides insights into their genetic architecture. New Phytol 227:967–975

    Article  PubMed  Google Scholar 

  27. Yan J, Zhang J, Sun K, Chang D, Bai S, Shen Y, Huang L, Zhang J, Zhang Y, Dong Y (2016) Ploidal level and DNA content of Erianthus arundinaceus as determined by flow cytometry and the association with biological characteristics. PLoS ONE 11:0151948

    Google Scholar 

  28. Turco A, Wagensommer RP, Medagli P, Albano A, D’Emerico S (2024) Advances in the study of Orchidinae subtribe (Orchidaceae) species with 40, 42-chromosomes in the Mediterranean region. Diversity 16(1):41

    Article  CAS  Google Scholar 

  29. Trávníček P, Čertner M, Ponert J, Chumová Z, Jersáková J, Suda J (2019) Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. New Phytol 224:1642–1656

    Article  PubMed  Google Scholar 

  30. Zhang G, Hu Y, Huang MZ, Huang WC, Liu DK, Zhang D, Zhang D, Hu H, Downing JL, Liu Z, Ma H (2023) Comprehensive phylogenetic analyses of Orchidaceae using nuclear genes and evolutionary insights into epiphytism. J Integr Plant Biol 65:1204–1225

    Article  CAS  PubMed  Google Scholar 

  31. GERAIS-CETEC CTDM (1983) Diagnóstico ambiental do Estado de Minas Gerais. Belo Horizonte

  32. Oliveira-Filho AT, Fontes MAL, Viana PL, Valente ASM, Salimena FRG, Ferreira FM (2013) Fanerógamas do Parque Estadual do Ibitipoca e suas relações florísticas com outras áreas com campo rupestre de Minas Gerais. In: Forzza RC, Neto LM, Salimena FRG, Zappi D (eds) Flora do Parque Estadual do Ibitipoca e seu entorno. Editora UFJF, Juiz de Fora, pp 27–52

    Google Scholar 

  33. Rocha GC (2013) Fanerogamas do Parque Estadual do Ibitipoca e suas relações florísticas com outras áreas com campo rupestre de Minas Gerais. In: Forzza RC, Neto LM, Salimena FRG, Zappi D (eds) Flora do Parque Estadual do Ibitipoca e seu entorno. Editora UFJF, Juiz de Fora, pp 27–52

    Google Scholar 

  34. Campacci TVS, Castanho CT, Oliveira RLF, Suzuki RM, Catharino ELM, Koehler S (2017) Effects of pollen origin on apomixis in Zygopetalum mackayi orchids. Flora 226:96–103

    Article  Google Scholar 

  35. Rasband WS (1997) ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA. https://imagej.nih.gov/ij/. Accessed June 2020

  36. Hammer O, Harper DAT, Ryan PD (2008) PAST—Palaeontological statistics 1.87 Zuerich, Switzerland

  37. Everitt BS (1978) Graphical techniques for multivariate data. Heinemann Educ. Books Ltd, London

    Google Scholar 

  38. Doležel J, Sgorbati S (1992) Comparison of the three DNA fluorochromes for flow cytometric estimation of nuclear DNA in plants. Physiol Plant 85:625–631

    Article  Google Scholar 

  39. Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120

    Article  Google Scholar 

  40. Terho P (2013) Flowing software, 2013. www.flowingsoftware.com. Accessed 20 May 2020

  41. Carvalho CR, Saraiva LS (1993) An air drying technique for maize chromosomes without enzymatic maceration. Biotech Histochem 68:142–145

    Article  PubMed  Google Scholar 

  42. Watanabe K, Yahara T, Denda T, Konsuge K (1999) Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae) statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. J Plant Res 112:45–161

    Article  Google Scholar 

  43. Levan A, Fredga A, Sanderberg AA (1964) Nomenclature for centromeric position in chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  44. Viccini LF, Pierre PMO, Praça MM et al (2006) Chromosome numbers in the genus Lippia (Verbenaceae). Plant Syst Evol 256:171–178

    Article  Google Scholar 

  45. Williams JGK, Hanafey MK, Rafalski JA, Tingey SV (1993) Genetic analysis using random amplified polymorphic DNA markers. Methods Enzymol 218:704–740

    Article  CAS  PubMed  Google Scholar 

  46. Cruz CD (2016) Genes software—extended and integrated with the R, Matlab and Selegen. Acta Sci Agro 38:547–552

    Article  Google Scholar 

  47. Weir BS (1990) Genetic-data analysis methods for discrete genetic data. Sinauer Assoc. Inc, Sunderland

    Google Scholar 

  48. Anderson JA, Churchill GA, Artique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Article  CAS  PubMed  Google Scholar 

  49. Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265

    Article  CAS  PubMed  Google Scholar 

  50. Kamvar ZN, Brooks JC, Grünwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:208

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramasamy RK, Ramasamy S, Bindroo BB, Naik VG (2014) Structure plot: a program for drawing elegant structure bar plots in user friendly interface. Springerplus 3:431

    Article  PubMed  PubMed Central  Google Scholar 

  54. Stift M, Kolář F, Meirmans PG (2019) STRUCTURE is more robust than other clustering methods in simulated mixed-ploidy populations. Heredity 123:429–441

    Article  PubMed  PubMed Central  Google Scholar 

  55. Earl DA, Von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  56. Evanno G, Regnaut S, Goude TJ (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  57. Félix LP, Guerra M (2000) Cytogenetics and cytotaxonomy of some Brazilian species of cymbidioid orchids. Genet Mol Biol 23:957–978

    Article  Google Scholar 

  58. Gomes SSL, Vidal JD, Neves CS, Zorzatto C, Campacci TVS, Lima AK, Koehler S, Viccini LF (2018) Genome size and climate segregation suggest distinct colonization histories of an orchid species from Neotropical high-elevation rocky complexes. Bot J Linn Soc 124:456–465

    Article  Google Scholar 

  59. Leitch IJ, Johnston E, Pellicer J, Hidalgo O, Bennett MD (2019) Plant DNA C-values database. http://www.kew.org/cvalues/. Accessed 26 May 2020

  60. Ehrendorfer F, Krendl F, Habeler E, Sauder W (1968) Chromosome numbers and evolution in primitive angiosperms. Taxon 17:337–468

    Article  Google Scholar 

  61. Stebbins GL (1971) Chromosomal evolution in higher plants. Arnold, London, p 216

    Google Scholar 

  62. Raven P (1975) The bases of angiosperm phylogeny: cytology. Ann Mo Bot Gard 62:724–764

    Article  Google Scholar 

  63. Grant V (1981) Plant speciation. Columbia University Press, New York

    Book  Google Scholar 

  64. Spoelhof JP, Soltis PS, Soltis DE (2017) Pure polyploidy: closing the gaps in autopolyploid research. J Syst Evol 55:340–352

    Article  Google Scholar 

  65. Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  66. Buggs RJ, Wendel JF, Doyle JJ, Soltis DE, Soltis PS, Coate JE (2014) The legacy of diploid progenitors in allopolyploid gene expression patterns. Philos Trans R Soc Lond B 369:20130354

    Article  Google Scholar 

  67. Soltis PS, Soltis DE (2016) Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol 30:159–165

    Article  PubMed  Google Scholar 

  68. Azevedo CO, Borba EL, van den Berg C (2006) Evidence of natural hybridization and introgression in Bulbophyllum involutum Borba, Semir & F. barros and B. weddellii (Lindl.) Rchb. f. (Orchidaceae) in the Chapada Diamantina, Brazil, by using allozyme markers. Braz J Bot 29:415–421

    Article  Google Scholar 

  69. Moccia MD, Widmer A, Cozzolino S (2007) The strength of reproductive isolation in two hybridizing food-deceptive orchid species. Mol Ecol 16:2855–2866

    Article  PubMed  Google Scholar 

  70. Conceição AS, Queiroz LP, Borba EL (2008) Natural hybrids in Chamaecrista sect. Absus subsect. Baseophyllum (Leguminosae-Caesalpinioideae): genetic and morphological evidence. Plant Syst Evol 271:19–27

    Article  Google Scholar 

  71. Goulet BE, Roda F, Hopkins R (2017) Hybridization in plants: old ideas, new techniques. Plant Physiol 173:65–78

    Article  CAS  PubMed  Google Scholar 

  72. Tsanakas GF, Mylona PV, Koura K, Gleridou A, Polidoros AN (2018) Genetic diversity analysis of the Greek lentil (Lens culinaris) landrace ‘Eglouvis’ using morphological and molecular markers. Plant Genet Resour 16:469–477

    Article  Google Scholar 

  73. Wu F, Chen J, Wang J, Wang X, Lu Y, Ning Y, Li Y (2019) Intra-population genetic diversity of Buchloedactyloides (Nutt.) Engelm (buffalo grass) determined using morphological traits and sequence-related amplified polymorphism markers. 3 Biotech 9:97

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pinheiro LR, Rabbani ARC, da Silva AVC, da Silva LA, Pereira KLG, Diniz LEC (2012) Genetic diversity and population structure in the Brazilian Cattleya labiata (Orchidaceae) using RAPD and ISSR markers. Plant Syst Evol 298:1815–1825

    Article  Google Scholar 

  75. Pinheiro F, Cardoso-Gustavson P, Suzuki RM, Abrão MCR, Guimarães LRS, Draper D, Moraes AP (2015) Strong post-zygotic isolation prevents introgression between two hybridizing neotropical orchids Epidendrum denticulatum and E. fulgens. Evol Ecol 29:229–248

    Article  Google Scholar 

  76. Rodrigues LA, Paiva Neto VBD, Boaretto AG, Oliveira JFD, Torrezan MDA, Lima SFD, Otoni WC (2015) In vitro propagation of Cyrtopodium saintlegerianum rchb. f. (orchidaceae), a native orchid of the Brazilian savannah. Crop Breed Appl Biotechnol 15:10–17

    Article  CAS  Google Scholar 

  77. Li A, Ge S (2006) Genetic variation and conservation of Changnienia amoena, an endangered orchid endemic to China. Plant Syst Evol 258:251–260

    Article  CAS  Google Scholar 

  78. Azizi MMF, Lau HY, Abu-Bakar N (2021) Integration of advanced technologies for plant variety and cultivar identification. J Biosci 46:91. https://doi.org/10.1007/s12038-021-00214-x

    Article  CAS  PubMed  Google Scholar 

  79. Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP (2010) Computational solutions to large-scale data management and analysis. Nat Rev Genet 11:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  81. Mucina L (2018) Vegetation of Brazilian campos rupestres on siliceous substrates and their global analogues. Flora 238:11–23

    Article  Google Scholar 

  82. Lambrecht SC, Dawson TE (2007) Correlated variation of floral and leaf traits along a moisture availability gradient. Oecologia 151:574–583

    Article  PubMed  Google Scholar 

  83. Pavarese G, Tranchida-Lombardo V, Galesi R, D’emerico S, Casotti R, Cristaudo A, Cozzolino S (2013) When polyploidy and hybridization produce a fuzzy taxon: the complex origin of the insular neoendemic Neotinea commutate (Orchidaceae). Bot J Linn Soc 173:707–720

    Article  Google Scholar 

  84. Gratani L (2014) Plant phenotypic plasticity in response to environmental factors. Adv Bot 2014:17

    Google Scholar 

  85. Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30

    Google Scholar 

  86. Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA (2016) On the relative abundance of autopolyploids and allopolyploids. New Phytol 210:391–398

    Article  PubMed  Google Scholar 

  87. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  88. Ackerman JD, Morales M, Tremblay R (2011) Darwin’s orchids: their variation, plasticity, and natural selection. Lankesteriana 11:179–184

    Article  Google Scholar 

  89. Moreira ASFP, Borba EL, Lemos-Filho JP (2013) Testing arbitrary classes of light in a physiognomically heterogeneous area of ‘campo rupestre’ vegetation. An Acad Bras Cienc 85:635–648

    Article  PubMed  Google Scholar 

  90. Viccini LF, Silveira RS, do Vale AA et al (2014) Citral and linalool content has been correlated to DNA content in Lippia alba (Mill.) N.E. Brown (Verbenaceae). Ind Crops Prod 59:14–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Instituto Estadual de Florestas (IEF) for making the collection of the samples possible.

Funding

This work was financially supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais-Fapemig (APQ-02096-14, APQ-02348-21,), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Capes and Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (314.443/2021-5).

Author information

Authors and Affiliations

Authors

Contributions

SSLG, LMN, and LFV designed the research; SSLG, JMLL, EMM, and EGC performed the research with the support of ALSA, MAM, JMSC, LMN, and LFV. SSLG, JMLL, EMM, ALSA, MAM, JMSC, LMN, and LFV analyzed the data; SSLG, JMLL, EMM, and LFV wrote the article with input from all the other authors.

Corresponding author

Correspondence to Lyderson Facio Viccini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, S.S.L., Lopes, J.M.L., de Matos, E.M. et al. Phenotypic variation seems not to be associated with the genetic profile in Zygopetalum (Orchidaceae): a case study of a high-elevation rocky complex. Mol Biol Rep 51, 582 (2024). https://doi.org/10.1007/s11033-024-09528-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09528-z

Keywords

Navigation