Skip to main content
Log in

Marine seaweed endophytic fungi-derived active metabolites promote reactive oxygen species-induced cell cycle arrest and apoptosis in human breast cancer cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Endophytic fungi have an abundant sources rich source of rich bioactive molecules with pivotal pharmacological properties. Several studies have found that endophytic fungi-derived bioactive secondary metabolites have antiproliferative, anti-oxidant, and anti-inflammatory properties, but the molecular mechanism by which they induce cell cycle arrest and apoptosis pathways is unknown. This study aimed to determine the molecular mechanism underlying the anticancer property of the endophytic fungi derived active secondary metabolites on human breast cancer cells.

Methods

In this study, we identified four endophytic fungi from marine seaweeds and partially screened its phytochemical properties by Chromatography-Mass Spectrometry (GC-MS) analysis. Moreover, the molecular mechanism underlying the anticancer property of these active secondary metabolites (FA, FB, FC and FE) on human breast cancer cells were examined on MCF-7 cells by TT assay, Apoptotic assay by Acridine orang/Ethidium Bromide (Dual Staining), DNA Fragmentation by DAPI Staining, reactive oxygen species (ROS) determination by DCFH-DA assay, Cell cycle analysis was conducted Flow cytometry and the apoptotic signalling pathway was evaluated by westernblot analysis. Doxorubicin was used as a positive control drug for this experiment.

Results

The GC-MS analysis of ethyl acetate extract of endophytic fungi from the marine macro-algae revealed the different functional groups and bioactive secondary metabolites. From the library, we observed the FC (76%), FB (75%), FA (73%) and FE (71%) have high level of antioxidant activity which was assessed by DPPH scavenging assay. Further, we evaluated the cytotoxic potentials of these secondary metabolites on human breast cancer MCF-7 cells for 24 h and the IC50 value were calculated (FA:28.62 ± 0.3 µg/ml, FB:49.81 ± 2.5 µg/ml, FC:139.42 ± µg/ml and FE:22.47 ± 0.5 µg/ul) along with positive control Doxorubicin 15.64 ± 0.8 µg/ml respectively by MTT assay. The molecular mechanism by which the four active compound induced apoptosis via reactive oxygen species (ROS) and cell cycle arrest in MCF-7 cells was determined H2DCFDA staining, DAPI staining, Acridine orange and ethidium bromide (AO/EtBr) dual staining, flowcytometry analysis with PI staining and apoptotic key regulatory proteins expression levels measured by westernblot analysis.

Conclusion

Our findings, revealed the anticancer potential of endophytic fungi from marine seaweed as a valuable source of bioactive compounds with anticancer properties and underscore the significance of exploring marine-derived endophytic fungi as a promising avenue for the development of novel anticancer agents. Further investigations are necessary to isolate and characterize specific bioactive compounds responsible for these effects and to validate their therapeutic potential in preclinical and clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and analysed in this study are available.

References

  1. Dzobo K (2022) The role of Natural products as sources of therapeutic agents for innovative drug Discovery. Compr Pharmacol 408–422. https://doi.org/10.1016/B978-0-12-820472-6.00041-4

  2. Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O (2020) Phytochemicals in Cancer Treatment: from preclinical studies to clinical practice. Front Pharmacol 10:1614. https://doi.org/10.3389/fphar.2019.01614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K (2018) Natural products for Drug Discovery in the 21st Century: innovations for Novel Drug Discovery. Int J Mol Sci 19(6):1578. https://doi.org/10.3390/ijms19061578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chunarkar-Patil P, Kaleem M, Mishra R, Ray S, Ahmad A, Verma D, Bhayye S, Dubey R, Singh HN, Kumar S (2024) Anticancer Drug Discovery based on Natural products: from computational approaches to Clinical studies. Biomedicines 12(1):201. https://doi.org/10.3390/biomedicines12010201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beutler JA (2019) Natural products as a Foundation for Drug Discovery. Curr Protocols Pharmacol 86(1):e67. https://doi.org/10.1002/cpph.67

    Article  Google Scholar 

  6. Younas M, Hano C, Giglioli-Guivarc’h N, Abbasi BH (2018) Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future perspectives. RSC Adv 8(52):29714–29744. https://doi.org/10.1039/c8ra04879g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khalifa SAM, Elias N, Farag MA, Chen L, Saeed A, Hegazy MF, Moustafa MS, El-Wahed A, Al-Mousawi A, Musharraf SM, Chang SG, Iwasaki FR, Suenaga A, Alajlani K, Göransson M, U., El-Seedi HR (2019) Marine Natural products: a source of Novel Anticancer drugs. Mar Drugs 17(9):491. https://doi.org/10.3390/md17090491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Rodríguez-Bernaldo A, López-Hernández J (2021) An overview on effects of Processing on the Nutritional Content and Bioactive compounds in Seaweeds. Foods (Basel Switzerland) 10(9):2168. https://doi.org/10.3390/foods10092168

    Article  CAS  Google Scholar 

  9. Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G (2020) Seaweeds as a functional ingredient for a healthy Diet. Mar Drugs 18(6):301. https://doi.org/10.3390/md18060301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carpena M, Garcia-Perez P, Garcia-Oliveira P et al (2022) Biological properties and potential of compounds extracted from red seaweeds. Phytochem Rev Published Online July 1. https://doi.org/10.1007/s11101-022-09826-z

  11. Dehelean CA, Marcovici I, Soica C, Mioc M, Coricovac D, Iurciuc S, Cretu OM, Pinzaru I (2021) Plant-Derived Anticancer compounds as New perspectives in Drug Discovery and Alternative Therapy. Molecules 26(4):1109. https://doi.org/10.3390/molecules26041109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kamat S, Kumari M, Sajna KV, Jayabaskaran C (2020) Endophytic fungus, Chaetomium Globosum, associated with marine green alga, a new source of Chrysin. Sci Rep 10(1):18726. https://doi.org/10.1038/s41598-020-72497-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khattab AR, Farag MA (2022) Marine and terrestrial endophytic fungi: a mine of bioactive xanthone compounds, recent progress, limitations, and novel applications. Crit Rev Biotechnol 42(3):403–430. https://doi.org/10.1080/07388551.2021.1940087

    Article  PubMed  Google Scholar 

  14. Jin JO, Yadav D, Madhwani K, Puranik N, Chavda V, Song M (2022) Seaweeds in the Oncology Arena: anti-cancer potential of Fucoidan as a Drug-A review. Molecules 27(18):6032. https://doi.org/10.3390/molecules27186032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rocha DHA, Seca AML, Pinto DCGA (2018) Seaweed secondary metabolites in Vitro and in vivo anticancer activity. Mar Drugs 16(11):410. https://doi.org/10.3390/md16110410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gutiérrez-Rodríguez AG, Juárez-Portilla C, Olivares-Bañuelos T, Zepeda RC (2018) Anticancer activity of seaweeds. Drug Discovery Today 23(2):434–447. https://doi.org/10.1016/j.drudis.2017.10.019

    Article  CAS  PubMed  Google Scholar 

  17. El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM (2021) Marine endophytic fungal metabolites: a whole new world of pharmaceutical therapy exploration. Heliyon 7(3):e06362. https://doi.org/10.1016/j.heliyon.2021.e06362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kousar R, Naeem M, Jamaludin MI, Arshad A, Shamsuri AN, Ansari N, Akhtar S, Hazafa A, Uddin J, Khan A, Al-Harrasi A (2022) Exploring the anticancer activities of novel bioactive compounds derived from endophytic fungi: mechanisms of action, current challenges and future perspectives. Am J cancer Res 12(7):2897–2919

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Méresse S, Fodil M, Fleury F, Chénais B (2020) Fucoxanthin, a Marine-Derived Carotenoid from Brown seaweeds and Microalgae: a promising bioactive compound for Cancer Therapy. Int J Mol Sci 21(23):9273. https://doi.org/10.3390/ijms21239273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kamat S, Kumari M, Taritla S et al (2020) Endophytic fungi of marine alga from Konkan coast, India—a rich source of bioactive material. Front Mar Biotechnol Bioprod 7:31. https://doi.org/10.3389/fmars.2020.00031

    Article  Google Scholar 

  21. Ahmed SA, Mendonca P, Elhag R, Soliman KFA (2022) Anticancer effects of Fucoxanthin through cell cycle arrest, apoptosis induction, angiogenesis inhibition, and Autophagy Modulation. Int J Mol Sci 23(24):16091. https://doi.org/10.3390/ijms232416091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumari M, Taritla S, Sharma A, Jayabaskaran C (2018) Antiproliferative and antioxidative bioactive compounds in extracts of Marine-Derived Endophytic Fungus Talaromyces Purpureogenus. Front Microbiol 9:1777. https://doi.org/10.3389/fmicb.2018.01777

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alves C, Silva J, Pinteus S, Gaspar H, Alpoim MC, Botana LM, Pedrosa R (2018) From Marine Origin to therapeutics: the Antitumor potential of Marine Algae-Derived compounds. Front Pharmacol 9:777. https://doi.org/10.3389/fphar.2018.00777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hsu WJ, Lin MH, Kuo TC, Chou CM, Mi FL, Cheng CH, Lin CW (2020) Fucoidan from Laminaria Japonica exerts antitumor effects on angiogenesis and micrometastasis in triple-negative breast cancer cells. Int J Biol Macromol 149:600–608. https://doi.org/10.1016/j.ijbiomac.2020.01.256

    Article  CAS  PubMed  Google Scholar 

  25. Calado MDL, Silva J, Alves C, Susano P, Santos D, Alves J, Martins A, Gaspar H, Pedrosa R, Campos MJ (2021) Marine endophytic fungi associated with Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS ONE 16(5):e0250954. https://doi.org/10.1371/journal.pone.0250954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koka P, Mundre RS, Rangarajan R, Chandramohan Y, Subramanian RK, Dhanasekaran A (2018) Uncoupling Warburg effect and stemness in CD133 + ve cancer stem cells from Saos-2 (osteosarcoma) cell line under hypoxia. Mol Biol Rep 45(6):1653–1662. https://doi.org/10.1007/s11033-018-4309-2

    Article  CAS  PubMed  Google Scholar 

  27. El-Sheekh MM, Nassef M, Bases E, Shafay SE, El-Shenody R (2022) Antitumor immunity and therapeutic properties of marine seaweeds-derived extracts in the treatment of cancer. Cancer Cell Int 22(1):267. https://doi.org/10.1186/s12935-022-02683-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Howard FM, Villamar D, He G, Pearson AT, Nanda R (2022) The emerging role of immune checkpoint inhibitors for the treatment of breast cancer. Expert Opin Investig Drugs 31(6):531–548. https://doi.org/10.1080/13543784.2022.1986002

    Article  CAS  PubMed  Google Scholar 

  29. Karimian A, Ahmadi Y, Yousefi B (2016) Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 42:63–71. https://doi.org/10.1016/j.dnarep.2016.04.008

    Article  CAS  PubMed  Google Scholar 

  30. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G (2016) Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging 8(4):603–619. https://doi.org/10.18632/aging.100934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taritla S, Kumari M, Kamat S, Bhat SG, Jayabaskaran C (2021) Optimization of PhysicoChemical Parameters for Production of Cytotoxic Secondary Metabolites and apoptosis induction activities in the Culture Extract of a Marine Algal-Derived Endophytic Fungus Aspergillus Sp. Front Pharmacol 12:542891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tarhouni-Jabberi S, Zakraoui O, Ioannou E et al (2017) Mertensene, a halogenated monoterpene, induces G2/M cell cycle arrest and caspase dependent apoptosis of human colon adenocarcinoma HT29 cell line through the modulation of ERK-1/-2, AKT and NF-κB signaling. 15:221

  33. Karthikeyan A, Joseph A, Nair BG (2022) Promising bioactive compounds from the marine environment and their potential effects on various diseases. J Genetic Eng Biotechnol 20(1):14. https://doi.org/10.1186/s43141-021-00290-4

    Article  Google Scholar 

  34. Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN, Chowdappa S, Alqarawi AA (2018) Endophytic Fungi-alternative sources of cytotoxic compounds: a review. Front Pharmacol 9:309 & Abd Allah, E. F. https://doi.org/10.3389/fphar.2018.00309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Damavandi MS, Shojaei H, Esfahani BN (2023) The anticancer and antibacterial potential of bioactive secondary metabolites derived from bacterial endophytes in association with Artemisia absinthium. Sci Rep 13(1):18473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sajna KV, Kamat S, Jayabaskaran CJFIMS (2020) Antiproliferative role of secondary metabolites from Aspergillus Unguis AG 1.1 (G) isolated from marine macroalgae enteromorpha sp. by inducing intracellular ROS production and mitochondrial membrane potential loss leading to apoptosis. Front Mar Biotechnol Bioprod. https://doi.org/10.3389/fmars.2020.543523. ,7:543523

    Article  Google Scholar 

  37. Sahoo S, Subban K, Chelliah J (2021) Diversity of Marine Macro-algicolous Endophytic Fungi and cytotoxic potential of Biscogniauxia Petrensis metabolites Against Cancer Cell lines. Front Microbiol 12:650177. https://doi.org/10.3389/fmicb.2021.650177

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sundaramoorthy S, Dakshinamoorthi A, K C (2022) Evaluation of anti-oxidant and anticancer effect of marine algae Cladophora glomerata in HT29 colon cancer cell lines- an in-vitro study. Int J Physiol Pathophysiology Pharmacol 14(6):332–339

    CAS  Google Scholar 

  39. Kaur N, Arora DS, Kalia N, Kaur M (2020) Bioactive potential of endophytic fungus Chaetomium Globosum and GC-MS analysis of its responsible components. Sci Rep 10(1):18792. https://doi.org/10.1038/s41598-020-75722-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Astuti P, Januarti IB, Kiromah NZW, Fitri HA, Wahyono W, Wahyuono S (2020) Pyrophen isolated from the endophytic fungus aspergillus fumigatus strain KARSV04 synergizes the Effect of Doxorubicin in killing MCF7 but not T47D cells. Turkish J Pharm Sci 17(3):280–284. https://doi.org/10.4274/tjps.galenos.2019.30633

    Article  CAS  Google Scholar 

  41. Güllülü Ö, Hehlgans S, Rödel C, Fokas E, Rödel F (2021) Tumor suppressor protein p53 and inhibitor of apoptosis proteins in Colorectal Cancer-A Promising Signaling Network for therapeutic interventions. Cancers 13(4):624. https://doi.org/10.3390/cancers13040624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang L, Hickman JH, Wang SJ, Gu W (2015) Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses. Cell Cycle (Georgetown Tex) 14(18):2881–2885. https://doi.org/10.1080/15384101.2015.1068479

    Article  CAS  PubMed  Google Scholar 

  43. Wu HY, Yang FL, Li LH, Rao YK, Ju TC, Wong WT, Hsieh CY, Pivkin MV, Hua KF, Wu SH (2018) Ergosterol peroxide from marine fungus Phoma sp. induces ROS-dependent apoptosis and autophagy in human lung adenocarcinoma cells. Sci Rep 8(1):17956. https://doi.org/10.1038/s41598-018-36411-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shi T, van Soest DMK, Polderman PE, Burgering BMT, Dansen TB (2021) DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radic Biol Med 172:298–311. https://doi.org/10.1016/j.freeradbiomed.2021.06.013

    Article  CAS  PubMed  Google Scholar 

  45. Rai N, Gupta P, Verma A, Singh SK, Gautam V (2023) Isolation and characterization of N-(2-Hydroxyethyl) hexadecanamide from Colletotrichum gloeosporioides with apoptosis-inducing potential in breast cancer cells. Biofactors 49(3):663–683. https://doi.org/10.1002/biof.1940

    Article  CAS  PubMed  Google Scholar 

  46. Trivedi VL, Soni R, Dhyani P, Sati P, Tejada S, Sureda A, Setzer WN, Abdull Razis F, Modu A, Butnariu B, M., Sharifi-Rad J (2023) Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent. Front Pharmacol 14:1187181. https://doi.org/10.3389/fphar.2023.1187181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Teixeira TR, Santos GSD, Armstrong L, Colepicolo P, Debonsi HM (2019) Antitumor potential of Seaweed derived-endophytic Fungi. Antibiot (Basel Switzerland) 8(4):205. https://doi.org/10.3390/antibiotics8040205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Cancer and stem cell research laboratory & Centralised Instrumentation Facility at Saveetha institute of medical and technical sciences for their technical services and support to complete our research work.

Author information

Authors and Affiliations

Authors

Contributions

Methodology and Data analysis; JV, Figures & tables; KSCB, JV, writing original draft preparation JV, KSCB, SR, VSJ, Conceptualization and supervision; RS & VSJ - have contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Veronica Shalini Jeyadoss or Raghunandhakumar Subramanian.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Ethical approval

Not Applicable.

Consent to publish

Not Applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatachalam, J., Jeyadoss, V.S., Bose, K.S.C. et al. Marine seaweed endophytic fungi-derived active metabolites promote reactive oxygen species-induced cell cycle arrest and apoptosis in human breast cancer cells. Mol Biol Rep 51, 611 (2024). https://doi.org/10.1007/s11033-024-09511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09511-8

Keywords

Navigation