Skip to main content
Log in

Characterization and genome-informatic analysis of a novel lytic Pseudomonas mendocina phage vB_PmeS_STP12 suitable for phage therapy or biocontrol

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 05 May 2024

This article has been updated

Abstract

Background

A novel lytic bacteriophage (phage) was isolated with Pseudomonas mendocina strain STP12 (P. mendocina) from the untreated site of Sewage Treatment Plant of Lovely Professional University, India. P. mendocina is a Gram-negative, rod-shaped, aerobic bacterium belonging to the family Pseudomonadaceae and has been reported in fifteen (15) cases of economically important diseases worldwide.

Methods and results

Here, a novel phage specifically infecting and killing P. mendocina strain STP12 was isolated from sewage sample using enrichment, spot test and double agar overlay (DAOL) method and was designated as vB_PmeS_STP12. The phage vB-PmeS-STP12 was viable at wide range of pH and temperature ranging from 4 to10 and − 20 to 70 °C respectively. Host range and efficiency of plating (EOP) analysis indicated that phage vB-PmeS-STP12 was capable of infecting and killing P. mendocina strain STP6 with EOP of 0.34. Phage vB_PmeS_STP12 was found to have a significant bacterial reduction (p < 0.005) at all the doses administered, particularly at optimal MOI of 1 PFU/CFU, compared to the control. Morphological analysis using high resolution transmission electron microscopy (HR-TEM) revealed an icosahedral capsid of ~ 55 nm in diameter on average with a short, non-contractile tail. The genome of vB_PmeS_STP12 is a linear, dsDNA containing 36,212 bp in size with a GC content of 58.87% harbouring 46 open reading frames (ORFs). The 46 predicted ORFs encode proteins with functional information categorized as lysis, replication, packaging, regulation, assembly, infection, immune, and hypothetical. However, the genome of vB_PmeS_STP12 appeared to be devoid of tRNAs, integrase gene, toxins genes, virulence factors, antimicrobial resistance genes (ARGs) and CRISPR arrays. The blast analysis with phylogeny revealed that vB_PmeS_STP12 is genetically similar to Pseudomonas phage PMBT14, Pseudomonas phage Almagne and Serratia phage Serbin with a highest identity of 74.00%, 74.93% and 59.48% respectively.

Conclusions

Taken together, characterization, morphological analysis and genome-informatics indicated that vB_PmeS_STP12 is podovirus morphotype belonging to the class Caudoviticetes, family Zobellviridae which appeared to be devoid of integrase gene, ARGs, CRISPR arrays, virulence factors and toxins genes, exhibiting stability and infectivity at wide range of pH (4 to10) and temperature (–20 to 70 °C), thereby making vB_PmeS_STP12 suitable for phage therapy or biocontrol. Based on the bibliometric analysis and data availability with respect to sequences deposited in GenBank, this is the first report of a phage infecting Pseudomonas mendocina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The genome sequence of Pseudomonas mendocina phage vB_PmeS_STP12 and the 16 S rRNA sequence of its host Pseudomonas mendocina strain STP12 have been deposited in the GenBank under the accession numbers OR754314 and OR188352 respectively (https://www.ncbi.nlm.nih.gov/nuccore). The 16 S rRNA sequences of the alternative hosts used for host range analysis namely P. mendocina strain STP6, S. stutzeri strain STP9, B. stratosphericus strain STP9 and P. mirabilis strain STP14 have also been deposited in the GenBank under the accession numbers OR188127, OR188486, OR186294, and OR187366 respectively (https://www.ncbi.nlm.nih.gov/nuccore).

Change history

Abbreviations

AMR:

Antimicrobial resistance

Anti-CRISPRdb:

Anti- Clustered regularly interspaced short palindromic repeats database

Anti-CRISPR proteins:

Anti- Clustered regularly interspaced short palindromic repeats proteins

ARGs:

Antimicrobial resistance genes

BLASTn:

Basic local alignment search tool for nucleotide

BLASTP:

Basic local alignment search tool for proteins

BOD:

Biochemical oxygen demand

CARD:

Comprehensive antibiotic research database

CIF:

Central instrumentation facility

COD:

Chemical oxygen demand

CRISPR-arrays:

Clustered regularly interspaced short palindromic repeats-arrays

CRISPRCasFinder:

Clustered regularly interspaced short palindromic repeats-CRISPR-associated protein finder

DAOL:

Double agar overlay

DHF:

Dihydrofolate

DNA:

Deoxyribonucleic acid

DO:

Dissolved oxygen

DSBs:

DNA double-strand breaks

dsDNA:

Double-stranded DNA

dUMP:

2’-deoxyuridine- 5’-monophosphate

dTMP:

2’-deoxythymidine-5’-monophosphate

eggNOG:

Evolutionary genealogy of genes:Non- supervised Orthologous Group

EC:

Electrical conductivity

EPA:

Environmental protection agency

HR-TEM:

High resolution-transmission electron microscopy

HQ:

High quality

HiFi:

High fidelity

ICTV:

International Committee on Taxonomy of Viruses

IISER:

Indian institute of science research and education

LB:

Luria Bertani

LPU:

Lovely Professional University

MDR Bacteria:

Multidrug-resistant bacteria

MMseqs:

Many-against-Many sequence searching

MOI:

Multiplicity of infection

mTHF:

5,10-methylenetetrahydrofolate

NCBI:

National Center for Biotechnology Information

NT:

Nucleotide

NR:

Non-redundant

ON:

Overnight

ORFs:

Open reading frames

PCR:

Polymerase chain reaction

PFU:

Plaque forming unit

PE:

Pair-end

RNA:

Ribonucleic acid

rRNA:

ribosomal RNA

SM buffer:

Sodium magnesium buffer

ssDNA:

Single-stranded DNA

STP:

Sewage treatment plant

TDS:

Total dissolved solid

TEM:

Transmission electron microscopy

TMHMM:

Transmembrane hidden Markov model

tRNA:

Transfer RNA

tRNAscan-SE:

Transfer RNA scan in genomic sequence

TSS:

Total suspended solid

US:

United States

UV light:

Ultraviolet light

VFDB:

Virulence factor database

WGS:

Whole-genome sequencing

References

  1. Usman SS, Uba AI, Christina E (2023) Bacteriophage genome engineering for phage therapy to combat bacterial antimicrobial resistance as an alternative to antibiotics. Mol Biol Rep 50(8):7055–7067. https://doi.org/10.1007/s11033-023-08557-4

    Article  CAS  PubMed  Google Scholar 

  2. Keller M, Wellington A, De Souza V, Capua J, Novello DL, Sillankorva S (2023) Complete genome sequence of a novel bacteriophage vB _ Pci _ PCMW57 infecting phytobacteria Pseudomonas cichorii, pp. 7105–7111

  3. Lamichhane B et al (2024) Salmonellosis: an overview of Epidemiology, Pathogenesis, and innovative approaches to mitigate the Antimicrobial resistant infections, pp. 1–55

  4. Kordi M, Talkhounche PG, Vahedi H, Farrokhi N, Tabarzad M (2024) Heterologous production of antimicrobial peptides: notes to consider. Protein J no November. https://doi.org/10.1007/s10930-023-10174-w

    Article  Google Scholar 

  5. Lucchino EC, Gennaro G, Favoino F, Goia F (2022) Jo ur na l P r f. Build Environ 109704. https://doi.org/10.1016/j.xplc.2024.100812

  6. Sen D, Mukhopadhyay P (2024) Antimicrobial Resistance (AMR) management using CRISPR-Cas based genome editing. Gene Genome Ed 100031. https://doi.org/10.1016/j.ggedit.2024.100031

  7. Sreekumaran S et al (2024) Predicting Human Risk with Multidrug Resistant Enterobacter hormaechei MS2 having MCR 9 Gene isolated from the feces of healthy broiler through whole-genome sequence-based analysis. Curr Microbiol 81(1):1–8. https://doi.org/10.1007/s00284-023-03492-w

    Article  CAS  Google Scholar 

  8. Wasan H, Reeta KH, Gupta YK (2023) Strategies to improve antibiotic access and a way forward for lower middle-income countries. J Antimicrob Chemother 79(1):1–10. https://doi.org/10.1093/jac/dkad291

    Article  Google Scholar 

  9. Collaborators AR (2022) Articles Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. 6736(21). https://doi.org/10.1016/S0140-6736(21)02724-0

  10. Online VA et al (2024) Materials advances delivery and enhanced therapeutic effects. https://doi.org/10.1039/d3ma00817g

  11. Mustafa MI, Mohammed A (2023) Developing recombinant antibodies by phage display technology to neutralize viral infectious diseases, SLAS Discov, no. December pp. 1–8, 2024, https://doi.org/10.1016/j.slasd.2024.01.001

  12. Helmy YA et al (2023) Antimicrobial Resistance and recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an emphasis on Foodborne pathogens

  13. Zahedipour F, Zahedipour F, Zamani P, Reza M, Sahebkar A (2023) Harnessing CRISPR technology for viral therapeutics and vaccines: from preclinical studies to clinical applications, Virus Res, vol. 341, no. December p. 199314, 2024, https://doi.org/10.1016/j.virusres.2024.199314

  14. Grigson SR, Giles SK, Edwards RA, Papudeshi B (2023) Knowing and naming: phage annotation and nomenclature for phage therapy. Clin Infect Dis 77:352–359. https://doi.org/10.1093/cid/ciad539

    Article  Google Scholar 

  15. Aragone MDR, Maurizi DM, Clara LO, Estrada JLN, Ascione A (1992) Pseudomonas mendocina, an environmental bacterium isolated from a patient with human infective endocarditis. J Clin Microbiol 30(6):1583–1584. https://doi.org/10.1128/jcm.30.6.1583-1584.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gani M, Rao S, Miller M, Scoular S (2019) Pseudomonas Mendocina bacteremia: a case study and review of literature. Am J Case Rep 20:453–458. https://doi.org/10.12659/AJCR.914360

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rapsinski GJ, Makadia J, Bhanot N, Min Z (2016) Pseudomonas mendocina native valve infective endocarditis: a case report. J Med Case Rep 6–10. https://doi.org/10.1186/s13256-016-1057-6

  18. Gani M, Miller M, Scoular S (2019) Pseudomonas Mendocina Bacteremia: a Case Study and Review of Literature. 453–458. https://doi.org/10.12659/AJCR.914360

  19. Ioannou P (2020) A Systematic Review of Human Infections by Pseudomonas mendocina, no. January, pp. 1–9

  20. Sutter ST, Halter J, Frei R, Widmer AF (2011) Pseudo-outbreak of Pseudomonas mendocina in stem cell cultures. J Hosp Infect 77(1):70–72. https://doi.org/10.1016/j.jhin.2010.08.008

    Article  Google Scholar 

  21. Greenough N, Gerry D (2021) Clinical infection in Practice First UK case report of a patient with Pseudomonas mendocina bacteraemia. Clin Infect Pract 10:100065. https://doi.org/10.1016/j.clinpr.2021.100065

    Article  Google Scholar 

  22. Bosco K, Lynch S, Sandaradura I, Khatami A (2023) Therapeutic phage monitoring: a review. Clin Infect Dis 77:384–394. https://doi.org/10.1093/cid/ciad497

    Article  Google Scholar 

  23. Yerushalmy O et al (2023) Towards standardization of Phage susceptibility testing: the Israeli phage therapy Center ‘ clinical phage Microbiology ’— A Pipeline proposal. Clin Infect Dis 77:337–351. https://doi.org/10.1093/cid/ciad514

    Article  Google Scholar 

  24. Fajardo-lubian A, Venturini C (2023) Use of bacteriophages to target intracellular pathogens. Clin Infect Dis 77:423–432. https://doi.org/10.1093/cid/ciad515

    Article  Google Scholar 

  25. Suh GA, Ferry T, Abdel MP (2023) Phage therapy as a Novel Therapeutic for the treatment of bone and joint infections. Clin Infect Dis 77:407–415. https://doi.org/10.1093/cid/ciad533

    Article  Google Scholar 

  26. Malik DJ et al (2023) Advanced Manufacturing, Formulation and Microencapsulation of Therapeutic Phages. Clin Infect Dis 77:370–383. https://doi.org/10.1093/cid/ciad555

    Article  Google Scholar 

  27. Abdelsattar AS, Dawoud A, Makky S, Nofal R, Aziz RK, El-Shibiny A (2021) Bacteriophages: from isolation to application. Curr Pharm Biotechnol 22. https://doi.org/10.2174/1389201022666210426092002

  28. Brives C, Pourraz J (2020) Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures. Palgrave Commun 6(1):1–11. https://doi.org/10.1057/s41599-020-0478-4

    Article  Google Scholar 

  29. Ji M, Liu Z, Sun K, Li Z, Fan X, Li Q (2021) Bacteriophages in water pollution control: advantages and limitations. Front Environ Sci Eng 15(5). https://doi.org/10.1007/s11783-020-1378-y

  30. Abedon ST (2023) How simple Maths can inform our Basic understanding of phage therapy. Clin Infect Dis 77:401–406. https://doi.org/10.1093/cid/ciad480

    Article  Google Scholar 

  31. Hyman P (2019) Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals 12(1). https://doi.org/10.3390/ph12010035

  32. Abdelsattar AS, Safwat A, Nofal R, Elsayed A, Makky S, El-Shibiny A (2021) Isolation and characterization of bacteriophage ZCSE6 against Salmonella spp.: phage application in milk. Biologics 1(2):164–176. https://doi.org/10.3390/biologics1020010

    Article  Google Scholar 

  33. Ali S, Karaynir A, Salih H, Oncü S, Bozdo B (2022) Characterization, genome analysis and antibiofilm efficacy of lytic Proteus phages RP6 and RP7 isolated from university hospital sewage, vol. 326, no. October 2023, https://doi.org/10.1016/j.virusres.2023.199049

  34. Sevcik K, Preston P, Aulner M, Noordewier B, Tolsma SS (2023) Complete Genome Sequences of Cluster S Mycobacteriophages Beelzebub, Raela, and RedRaider77. Microbiol Resour Announc 12(1):17–19. https://doi.org/10.1128/mra.01173-22

    Article  CAS  Google Scholar 

  35. Mardiana M, Teh SH, Tsai YC, Yang HH, Lin LC, Lin NT (2023) Characterization of a novel and active temperate phage vB_AbaM_ABMM1 with antibacterial activity against Acinetobacter baumannii infection. Sci Rep 13(1):1–13. https://doi.org/10.1038/s41598-023-38453-7

    Article  CAS  Google Scholar 

  36. Loh B et al (2021) Complete Genome Sequences of Bacteriophages Kaya, Guyu, Kopi, and TehO, which target clinical strains of Pseudomonas aeruginosa. Microbiol Resour Announc 10(48):14–16. https://doi.org/10.1128/mra.01043-21

    Article  Google Scholar 

  37. Kazimierczak J, Wójcik EA, Witaszewska J, Guzi A (2019) Complete genome sequences of Aeromonas and Pseudomonas phages as a supportive tool for development of antibacterial treatment in aquaculture, pp. 1–12

  38. Guo J, Xu S, Liu Y, Zhang C, Hou S (2023) Complete genome sequence of Stutzerimonas stutzeri strain SOCE 002, a Marine Bacterium isolated from the Surface seawater of Dapeng Bay. Microbiol Resour Announc 12(5):10–12. https://doi.org/10.1128/mra.00150-23

    Article  CAS  Google Scholar 

  39. Akmal M, Nishiki I, Zrelovs N, Yoshida T (2022) Complete genome sequence of a novel lytic bacteriophage, PLG – II, specific for Lactococcus garvieae serotype II strains that are pathogenic to fish. Arch Virol 167(11):2331–2335. https://doi.org/10.1007/s00705-022-05568-7

    Article  CAS  PubMed  Google Scholar 

  40. Kwon H et al (2024) Genomic and biological characteristics of a novel lytic phage, vB_MscM-PMS3, infecting the opportunistic zoonotic pathogen Mammaliicoccus Sciuri. Arch Virol 169(1):1–6. https://doi.org/10.1007/s00705-023-05940-1

    Article  CAS  Google Scholar 

  41. Mareso C et al (2023) Optimization of long-range PCR protocol to prepare filaggrin exon 3 libraries for PacBio long-read sequencing. Mol Biol Rep 50(4):3119–3127. https://doi.org/10.1007/s11033-022-08170-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maffei E et al (2024) Phage paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication. Nat Commun 15(1):175. https://doi.org/10.1038/s41467-023-44157-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fredriksson NJ, Hermansson M, Wilén BM (2013) The choice of PCR primers has great impact on assessments of Bacterial Community Diversity and Dynamics in a Wastewater Treatment Plant. PLoS ONE 8(10):1–20. https://doi.org/10.1371/journal.pone.0076431

    Article  CAS  Google Scholar 

  44. Galkiewicz JP, Kellogg CA (2008) Cross-kingdom amplification using Bacteria-specific primers: complications for studies of coral microbial ecology. Appl Environ Microbiol 74(24):7828–7831. https://doi.org/10.1128/AEM.01303-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miyashita A et al (2009) Development of 16S rRNA gene-targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs). FEMS Microbiol Lett 297(1):31–37. https://doi.org/10.1111/j.1574-6968.2009.01648.x

    Article  CAS  PubMed  Google Scholar 

  46. Salim A et al (2021) Bacteriophage-based control of biogenic hydrogen sulphide produced by multidrug resistant Salmonella enterica in synthetic sewage. J Environ Chem Eng 9(4):105797. https://doi.org/10.1016/j.jece.2021.105797

    Article  CAS  Google Scholar 

  47. Dewanggana MN, Evangeline C, Ketty MD, Waturangi DE, Yogiara, Magdalena S (2022) Isolation, characterization, molecular analysis and application of bacteriophage DW-EC to control enterotoxigenic Escherichia coli on various foods. Sci Rep 12(1):1–10. https://doi.org/10.1038/s41598-021-04534-8

    Article  CAS  Google Scholar 

  48. Salim A, Madhavan A, Subhash S, Prasad M, Nair BG, Pal S (2022) Escherichia coli ST155 as a production-host of three different polyvalent phages and their characterisation with a prospect for wastewater disinfection. Sci Rep 12(1):1–16. https://doi.org/10.1038/s41598-022-24134-4

    Article  CAS  Google Scholar 

  49. Ma Y et al (2016) Isolation and molecular characterisation of Achromobacter phage phiAxp-3, an N4-like bacteriophage, Sci. Rep, vol. 6, no. February, pp. 1–12, https://doi.org/10.1038/srep24776

  50. Nivas D, Ramesh N, Krishnakumar V, Rajesh P, King Solomon E, Kannan VR (2015) Distribution, isolation and characterization of lytic bacteriophages against multi-drug resistant and extended-spectrum of β-lactamase producing pathogens from hospital effluents. Asian J Pharm Clin Res 8(2):384–389

    Google Scholar 

  51. Runa V, Wenk J, Bengtsson S, Jones BV, Lanham AB (October, 2021) Bacteriophages in Biological Wastewater Treatment systems: occurrence, characterization, and function. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.730071

  52. Manohar P, Tamhankar AJ, Lundborg CS, Ramesh N (2018) Isolation, characterization and in vivo efficacy of Escherichia phage myPSH1131. PLoS ONE 13(10):1–17. https://doi.org/10.1371/journal.pone.0206278

    Article  CAS  Google Scholar 

  53. Porayath C et al (2018) Characterization of the bacteriophages binding to human matrix molecules. Int J Biol Macromol 110:608–615. https://doi.org/10.1016/j.ijbiomac.2017.12.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Czajkowski R, Ozymko Z, Lojkowska E (2016) Application of zinc chloride precipitation method for rapid isolation and concentration of infectious Pectobacterium spp. and Dickeya spp. lytic bacteriophages from surface water and plant and soil extracts. 29–33. https://doi.org/10.1007/s12223-015-0411-1

  55. Santos MA (1991) An improved method for the small scale preparation of bacteriophage DNA based on phage precipitation by zinc chloride. 19(19):5442

  56. Glonti T, Pirnay J (1940) In Vitro Measurement Of Phage Characteristics That Are Im- portant for Phage Therapy Outcome, Viruses, vol. 14, no. pp. 1–23, 2022

  57. Mankovich AG, Maciel K, Kavanaugh M, Kistler E, Muckle E, Weingart CL (2023) Phage-antibiotic synergy reduces Burkholderia cenocepacia population. BMC Microbiol 23(1):1–12. https://doi.org/10.1186/s12866-022-02738-0

    Article  CAS  Google Scholar 

  58. Manohar P, Tamhankar AJ, Lundborg CS, Nachimuthu R (2019) Therapeutic characterization and efficacy of bacteriophage cocktails infecting Escherichia coli, klebsiella pneumoniae, and enterobacter species, Front. Microbiol, vol. 10, no. MAR, pp. 1–12, https://doi.org/10.3389/fmicb.2019.00574

  59. Cieplak T, Soffer N, Sulakvelidze A, Nielsen DS (2018) A bacteriophage cocktail targeting Escherichia coli reduces E. Coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes 9(5):391–399. https://doi.org/10.1080/19490976.2018.1447291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sun WJ et al (2012) A novel bacteriophage KSL-1 of 2-Keto-gluconic acid producer Pseudomonas fluorescens K1005: isolation, characterization and its remedial action. BMC Microbiol 12:1–8. https://doi.org/10.1186/1471-2180-12-127

    Article  CAS  Google Scholar 

  61. Nayfach S, Camargo AP, Schulz F, Eloe-fadrosh E, Roux S, Kyrpides NC (May, 2021) Metagenome-assembled viral genomes. Nat Biotechnol 39. https://doi.org/10.1038/s41587-020-00774-7

  62. Hyatt D, Chen G, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification

  63. Table S, Mmseqs F, Fig S (2007) MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. 1–3. https://doi.org/10.1038/nbt.3988

  64. Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL (2000) Prediction of transcription terminators in bacterial genomes. 27–33. https://doi.org/10.1006/jmbi.2000.3836

  65. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. 25(5):955–964

  66. Krogh A, Larsson È, Von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov Model: application to complete genomes. https://doi.org/10.1006/jmbi.2000.4315

  67. Couvin D et al (2018) CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins, vol. 46, no. May, pp. 246–251, https://doi.org/10.1093/nar/gky425

  68. Dong C et al (2017) September., Anti-CRISPRdb: a comprehensive online resource for anti-CRISPR proteins, vol. 46, no. pp. 393–398, 2018, https://doi.org/10.1093/nar/gkx835

  69. Li Y, Bondy-denomy J (2020) Review Anti-CRISPRs go viral: the infection biology of CRISPR-Cas inhibitors. Cell Host Microbe 29(5):704–714. https://doi.org/10.1016/j.chom.2020.12.007

    Article  CAS  Google Scholar 

  70. Eitzinger S et al (2020) Machine learning predicts new anti-CRISPR proteins. 48(9):4698–4708. https://doi.org/10.1093/nar/gkaa219

  71. Chen L et al (2005) VFDB: a reference database for bacterial virulence factors. 33:325–328. https://doi.org/10.1093/nar/gki008

  72. Mcarthur AG et al (2013) The Comprehensive Antibiotic Resistance Database, vol. 57, no. 7, pp. 3348–3357, https://doi.org/10.1128/AAC.00419-13

  73. Buchfink B, Reuter K, Drost HG (2021) Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 18(4):366–368. https://doi.org/10.1038/s41592-021-01101-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Saitou N, Nei M (1987) The neighbor-joining method: a New Method for reconstructing phylogenetic trees ’. 4(4):406–425

  75. Wang RH et al (2023) Phag eScope: a w ell-annotat ed bact eriophag e database with automatic analyses and visualizations, pp. 1–6

  76. Tisza MJ, Buck CB (2021) A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. 33:1–11. https://doi.org/10.1073/pnas.2023202118

  77. Turner D, Kropinski AM, Adriaenssens EM (2021) A roadmap for genome-based phage taxonomy. Viruses 13(3):1–10. https://doi.org/10.3390/v13030506

    Article  CAS  Google Scholar 

  78. Moraru C, Nayfach S, Lab B (2022) and U. States Vicente Pérez-Brocal, Phage family classification under Caudoviricetes: A review of current tools using the latest ICTV classification framework, Front. Microbiol, vol. 13, p. 1032186, [Online]. Available: https://doi.org/10.3389/fmicb.2022.1032186

  79. Turner D, Shkoporov AN, Lood C, Millard AD, Dutilh BE (2023) Abolishment of morphology – based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch Virol 168(2):1–9. https://doi.org/10.1007/s00705-022-05694-2

    Article  CAS  Google Scholar 

  80. Evseev P, Gutnik D, Shneider M, Miroshnikov K (2023) Use of an Integrated Approach Involving AlphaFold predictions for the Evolutionary Taxonomy of Duplodnaviria viruses. Biomolecules 13(1). https://doi.org/10.3390/biom13010110

  81. Grami E, Laadouze I, Ben Tiba S, Hafiane A, Sealey KS, Saidi N (2023) Isolation, characterization, and comparative genomic analysis of vB_Pd_C23, a Novel bacteriophage of Pantoea dispersa. Curr Microbiol 80(1):1–11. https://doi.org/10.1007/s00284-022-03152-5

    Article  CAS  Google Scholar 

  82. Gorodnichev RB et al (2023) Isolation and characterization of the First Zobellviridae Family Bacteriophage infecting Klebsiella pneumoniae. Int J Mol Sci 24(4). https://doi.org/10.3390/ijms24044038

  83. Krupovic M et al (2021) Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: update of taxonomy changes in 2021. Arch Virol 166(11):3239–3244. https://doi.org/10.1007/s00705-021-05205-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng K et al (2023) Genomic diversity and ecological distribution of marine Pseudoalteromonas phages. Mar Life Sci Technol 5(2):271–285. https://doi.org/10.1007/s42995-022-00160-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang M et al (2023) Genomic diversity and biogeographic distributions of a novel lineage of bacteriophages that infect marine OM43 bacteria. Microbiol Spectr 11(5). https://doi.org/10.1128/spectrum.04942-22

  86. Ge F et al (2023) Characterization and genomic analysis of Stutzerimonas stutzeri phage vB _ PstS _ ZQG1, representing a novel viral genus. Virus Res 336:199226. https://doi.org/10.1016/j.virusres.2023.199226. June

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Koberg S, Gieschler S, Brinks E, Wenning M, Neve H, Franz CMAP (2018) Genome sequence of the novel virulent bacteriophage PMBT14 with lytic activity against Pseudomonas fluorescens DSM 50090R. Arch Virol 163(9):2575–2577. https://doi.org/10.1007/s00705-018-3882-y

    Article  CAS  PubMed  Google Scholar 

  88. Cantalapiedra CP, Huerta-cepas J, Hern A, Letunic I, Bork P (2021) eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale, vol. 38, no. 12, pp. 5825–5829, https://doi.org/10.1093/molbev/msab293

  89. McMillan S, Edenberg HJ, Radany EH, Friedberg RC, Friedberg EC (1981) Den V gene of bacteriophage T4 codes for both pyrimidine dimer-DNA glycosylase and apyrimidinic endonuclease activities. J Virol 40(1):211–223. https://doi.org/10.1128/jvi.40.1.211-223.1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Radany EH, Nguyen HT, Minton KW (1987) Activities involved in base excision repair of bacteriophage T4 and lambda DNA in vivo. MGG Mol Gen Genet 209(1):83–89. https://doi.org/10.1007/BF00329840

    Article  CAS  PubMed  Google Scholar 

  91. Chang Y, Wang Q, Su T, Qi Q (2021) Identification of phage recombinase function unit in Genus Corynebacterium. Appl Microbiol Biotechnol 105(12):5067–5075. https://doi.org/10.1007/s00253-021-11384-x

    Article  CAS  PubMed  Google Scholar 

  92. Huerta-Cepas J et al (2019) EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47 D1, pp. D309–D314. https://doi.org/10.1093/nar/gky1085

Download references

Acknowledgements

We would like to thank Lovely Professional University for providing the facilities to carry out the present study; Associate Professor Gabriel Magno de Freitas Almeida of UiT The Arctic University of Norway for his constructive guidance; the CIF, IISER Thiruvananthapuram for conducting the HR-TEM analysis.

Funding

No funding is received.

Author information

Authors and Affiliations

Authors

Contributions

Sani Sharif Usman: Conceptualization, Formal analysis, Investigation, Project administration, Software, Writing – original draft, Writing – review & editing. Evangeline Christina: Conceptualization, Formal analysis, Investigation, Project administration, Software, Supervision, Writing – original draft, Writing – review & editing. The authors read and approved the final manuscript as well as agreed to authorship and submission of the manuscript for publication.

Corresponding author

Correspondence to Evangeline Christina.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

Authors have declared that no competing interest exists.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The article title is corrected as ‘Characterization and genome-informatic analysis of a novel lytic Pseudomonas mendocina phage vB_PmeS_STP12 suitable for phage therapy or biocontrol’

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, S.S., Christina, E. Characterization and genome-informatic analysis of a novel lytic Pseudomonas mendocina phage vB_PmeS_STP12 suitable for phage therapy or biocontrol. Mol Biol Rep 51, 419 (2024). https://doi.org/10.1007/s11033-024-09362-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09362-3

Keywords

Navigation