Skip to main content
Log in

Regulation of blue infertile flower pigmentation by WD40 transcription factor HmWDR68 in Hydrangea macrophylla ‘forever summer’

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

WD40 transcription factors are crucial in plant growth and developmental, significantly impacting plant growth regulation. This study investigates the WD40 transcription factor HmWDR68’s role in developing the distinctive blue infertile flower colors in Hydrangea macrophylla ‘Forever Summer’.

Methods and results

The HmWDR68 gene was isolated by PCR, revealing an open reading frame of 1026 base pairs, which encodes 341 amino acids. Characterized by four WD40 motifs, HmWDR68 is a member of the WD40 family. Phylogenetic analysis indicates that HmWDR68 shares high homology with PsWD40 in Camellia sinensis and CsWD40 in Paeonia suffruticosa, both of which are integral in anthocyanin synthesis regulation. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that HmWDR68 expression in the blue infertile flowers of ‘Forever Summer’ hydrangea was significantly higher compared to other tissues and organs. Additionally, in various hydrangea varieties with differently colored infertile flowers, HmWDR68 expression was markedly elevated in comparison to other hydrangea varieties, correlating with the development of blue infertile flowers. Pearson correlation analysis revealed a significant association between HmWDR68 expression and the concentration of delphinidin 3-O-glucoside, as well as key genes involved in anthocyanin biosynthesis (HmF3H, HmC3’5’H, HmDFR, and HmANS) in the blue infertile flowers of ‘Forever Summer’ hydrangea (P < 0.01).

Conclusion

These findings suggest HmWDR68 may specifically regulate blue infertile flower formation in hydrangea by enhancing delphinidin-3-O-glucoside synthesis, modulating expression of HmF3H, HmC3’5’H, HmDFR and HmANS. This study provides insights into HmWDR68’s role in hydrangea’s blue flowers development, offering a foundation for further research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

References

  1. Liang Q, Li GQ, Xu WH (2013) Chemical composition of essential oil from Hydrangea macrophylla flower. Chem Nat Compd 49(2):365–366. https://doi.org/10.1007/s10600-013-0609-x

    Article  CAS  Google Scholar 

  2. Song EG, Lee HS, Ryu KH (2016) Occurrence of hydrangea ringspot virus and hydrangea chlorotic mottle virus in hydrangea plants in South Korea. J Gen Plant Pathol 82(5):281–285. https://doi.org/10.1007/s10327-016-0670-y

    Article  CAS  Google Scholar 

  3. Han KT, Hu K, Dai SL (2008) Molecular design of ornamental flower color. Mol Plant Breed 6(1):16–24. https://doi.org/10.3969/j.issn.1672-416X.2008.01.003

    Article  CAS  Google Scholar 

  4. Chen HX, Wang DH, Zhu YL, Li WF, Chen JR, Li YF (2022) Integrative transcriptomics and proteomics elucidate the regulatory mechanism of Hydrangea macrophylla flower-color changes induced by exogenous aluminum. Agronomy 12(4):969. https://doi.org/10.3390/agronomy12040969

    Article  CAS  Google Scholar 

  5. Rahmati R, Hamid R, Ghorbanzadeh Z, Jacob F, Azadi P, Zeinalabedini M, Farsad LK, Kazemi M, Ebrahimi MA, Shahinnia F, Salekdeh GH, Ghaffari MR, Hajirezaei MR (2022) Comparative transcriptome analysis unveils the molecular mechanism underlying sepal colour changes under acidic pH substratum in hydrangea macrophylla. Int J Mol Sci 23(23):15428. https://doi.org/10.3390/ijms232315428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schreiber HD, Jones AH, Lariviere CM, Mayhew KM, Cain JB (2011) Role of aluminum in red-to-blue color changes in Hydrangea macrophylla sepals. Biometals 24:1005–1015. https://doi.org/10.1007/s10534-011-9458-x

    Article  CAS  PubMed  Google Scholar 

  7. Gong ZX, He Y, Yang J, Song Y, Ye ZX, Zhu ZJ (2017) Mechanism of exogenous Al2(SO4)3 on regulating the anthocyanin concentration in Hydrangea macrophylla petal. Plant Nutr Fertil Sci 23:821–826. https://doi.org/10.11674/zwyf.16407

    Article  Google Scholar 

  8. Eid GM, Albatal N, Haddad S (2015) Effect of aluminum sulfate on the chlorophyll a, chlorophyll b, carotenoids and anthocyanin content in some cultivars of hydrangea (Hydrangea macrophylla). Int J Hortic 5(9):1–8. https://doi.org/10.5376/ijh.2015.05.0009

    Article  Google Scholar 

  9. Shoji K, Momonoi K, Tsuji T (2010) Alternative expression of vacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in Tulip Cv. ‘Murasakizuisho’ Plant Cell Physiol 51(2):215–224. https://doi.org/10.1093/pcp/pcp181

    Article  CAS  PubMed  Google Scholar 

  10. Takaaki I, Kinichi O, Kumi Y (2018) Direct observation of hydrangea blue-complex composed of 3-O-glucosyldelphinidin, Al3+ and 5-O-acylquinic acid by ESI-mass spectrometry. Molecules 23(6):1424. https://doi.org/10.3390/molecules23061314

    Article  CAS  Google Scholar 

  11. Yuan SX, Qi H, Yang SN, Chu ZY, Zhang GT, Liu C (2023) Role of delphinidin-3-glucoside in the sepal blue color change among Hydrangea macrophylla cultivars. Sci Hort 313:111902. https://doi.org/10.1016/j.scienta.2023.111902

    Article  CAS  Google Scholar 

  12. Peng JQ, Dong XJ, Xue C, Liu ZM, Cao FX (2021) Exploring the molecular mechanism of blue flower color formation in Hydrangea macrophylla cv. Forever Summer Front Plant Sci 12:585665. https://doi.org/10.3389/fpls.2021.585665

    Article  PubMed  Google Scholar 

  13. Aguilar-Barragán A, Ochoa-Alejo N (2014) Virus-induced silencing of MYB and WD40 transcription factor genes affects the accumulation of anthocyanins in Chilli pepper fruit. Biol Plant 58:567–574. https://doi.org/10.1007/s10535-014-0427-4

    Article  CAS  Google Scholar 

  14. Hoey T, Weinzierl RO, Gill G, Chen JL, Dynlacht BD, Tjian R (1993) Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72(2):247–260. https://doi.org/10.1016/0092-8674(93)90664-C

    Article  CAS  PubMed  Google Scholar 

  15. Peng JQ (2021) Study on the regulatory mechanism of pigment formation in sterile flowers of Hydrangea macrophylla. Central South University of Forestry and Technology. https://doi.org/10.27662/d.cnki.gznlc.2021.000858

  16. Peng JQ, Xue C, Dong XJ, Zeng CZ, Wu Y, Cao FX (2021) Gene cloning and analysis of the pattern of expression of the transcription factor HymMYB2 related to blue flower formation in Hydrangea macrophylla. Euphytica 217(6):115. https://doi.org/10.1007/s10681-021-02839-3

    Article  CAS  Google Scholar 

  17. Qi H, Zhang GT, Chu ZY, Liu C, Yuan SX (2022) Identification of seven key structural genes in the anthocyanin biosynthesis pathway in sepals of Hydrangea macrophylla. Curr Issues Mol Biol 44(9):4167–4180. https://doi.org/10.3390/cimb44090286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka Y, Ohmiya A (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19(2):190–197. https://doi.org/10.1016/j.copbio.2008.02.015

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka Y, Brugliera F, Chandler S (2009) Recent progress of flower colour modification by biotechnology. Int J Mol Sci 10(12):5350–5369. https://doi.org/10.3390/ijms10125350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong W, Niu LL, Gu JT, Gao F (2014) Isolation of a WD40-repeat gene regulating anthocyanin biosynthesis in storage roots of purple-fleshed sweet potato. Acta Physiol Plant 36(5):1123–1132. https://doi.org/10.1007/s11738-014-1487-y

    Article  CAS  Google Scholar 

  21. Pang YZ, Wenger JP, Saathoff K, Peel GJ, Wen JQ, Huhman D, Allen SN, Tang TH, Cheng XF, Tadege M, Ratet P, Mysore KS, Sumner LW, Marks MD, Dixon RA (2009) A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. Plant Physiol 151(3):1114–1129. https://doi.org/10.1104/pp.109.144022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Andrea M, Francesco EF, Sergio I, Alessandra G, Maria AM, Lorenzo B, Arianna M, Cecilia C, Patrizia R, Laura T, Giuseppe LR, Sergio L, Laura B (2022) Identification of a new R3 MYB type repressor and functional characterization of the members of the MBW transcriptional complex involved in anthocyanin biosynthesis in eggplant (S. melongena L). PLoS ONE 15(5):e0232986. https://doi.org/10.1371/journal.pone.0232986

    Article  CAS  Google Scholar 

  23. Miller JC, Chezem WR, Clay NK (2016) Ternary WD40 repeat-containing protein complexes: evolution, composition and roles in plant immunity. Front Plant Sci 6:1108. https://doi.org/10.3389/fpls.2015.01108

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xie T, Zan XY, Chen X, Zhu HT, Rong H, Wang YP, Jiang JJ (2022) An R3-MYB repressor, BnCPC forms a feedback regulation with MBW complex to modulate anthocyanin biosynthesis in Brassica napus. Biotechnol Biofuels 15(1):133. https://doi.org/10.1186/s13068-022-02227-6

    Article  CAS  Google Scholar 

  25. Williams FE, Varanasi U, Trumbly RJ (1991) The CYC8 and TUP1 proteins involved in glucose repression in Saccharomyces cerevisiae are associated in a protein complex. Mol Cell Biol 11(6):3307–3316. https://doi.org/10.1128/MCB.11.6.3307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hostos ELD, Bradtke B, Lottspeich F, Guggenheim R, Gerisch G (1991) Coronin, an actin binding protein of Dictyostelium Discoideum localized to cell surface projections, has sequence similarities to G protein subunits. EMBO J 10(13):4097–4104. https://doi.org/10.1002/j.1460-2075.1991.tb04986.x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Feldman RM, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91(2):221–230. https://doi.org/10.1016/S0092-8674(00)80404-3

    Article  CAS  PubMed  Google Scholar 

  28. Liu YJ, Hou H, Jiang XL, Wang PQ, Dai XL, Chen W, Gao LP, Xia T (2018) A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB-bHLH-WD40 ternary complexes. Int J Mol Sci 19(6):1686. https://doi.org/10.3390/ijms19061686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yue ML, Jiang LY, Zhang NT, Zhang LX, Liu YQ, Lin YX, Zhang YT, Luo Y, Zhang Y, Wang Y, Li MY, Wang XR, Chen Q, Tang HR (2023) Regulation of flavonoids in strawberry fruits by FaMYB5/FaMYB10 dominated MYB-bHLH-WD40 ternary complexes. Front. Plant Sci 14:1145670. https://doi.org/10.3389/fpls.2023.1145670

    Article  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative geneexpression data using real time quantitative PCR and the 2–∆∆CT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  31. Wang P, Ma G, Zhang L, Li Y, Zhou FP, Kan XY, Han YH, Wang HY, Jiang XL, Liu YJ, Gao LP, Xia T (2019) A sucrose-induced MYB (SIMYB) transcription factor promoting proanthocyanidin accumulation in the tea plant (Camellia sinensis). J Agric Food Chem 67:1418–1428

    Article  CAS  PubMed  Google Scholar 

  32. Zhang C, Wang WN, Wang YJ, Gao SL, Du DN, Fu JX, Dong L (2014) Anthocyanin biosynthesis and accumulation in developing flowers of tree peony (Paeonia suffruticosa) ‘Luoyang Hong’. Postharvest Biol Technol 97:11–22

    Article  CAS  Google Scholar 

  33. Hu R, Xiao J, Gu T, Yu X, Zhang Y, Chang J, Yang G, He G (2018) Correction to: genome-wide identification and analysis of WD40 proteins in wheat (Triticum aestivum L). BMC Genomics 19(1):852. https://doi.org/10.1186/s12864-018-5252-2

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tan L, Salih H, Htet NNW, Azeem F, Zhan R (2021) Genomic analysis of WD40 protein family in the mango reveals a TTG1 protein enhances root growth and abiotic tolerance in Arabidopsis. Sci Rep 11(1):2266. https://doi.org/10.1038/s41598-021-81969-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng J, Liao Y, Xu F, Zhou X, Ye J, Fu M, Liu X, Cao Z, Zhang W (2021) Genome-wide identification of WD40 superfamily genes and prediction of WD40 gene of flavonoid-related genes in Ginkgo biloba. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(2):12086. https://doi.org/10.15835/nbha49212086

    Article  CAS  Google Scholar 

  36. Zou XD, Hu XJ, Ma J, Li T, Ye ZQ, Wu YD (2016) Genome-wide analysis of WD40 protein family in human. Sci Rep 6(6):39262. https://doi.org/10.1038/srep39262

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mishra AK, Puranik S, Prasad M (2012) Structure and regulatory networks of WD40 protein in plants. J Plant Biochem Biotechnol 21(1):32–39. https://doi.org/10.1007/s13562-012-0134-1

    Article  CAS  Google Scholar 

  38. Jain BP, Pandey S (2018) WD40 repeat proteins: signalling scaffold with diverse functions. Protein J 37(5):391–406. https://doi.org/10.1007/s10930-018-9785-7

    Article  CAS  PubMed  Google Scholar 

  39. Chen SW, Li DP, Chen SS, He JN, Wang ZB, Yang GY, Lu ZM (2022) Identifying and expression analysis of WD40 transcription factors in walnut. Plant Genome 15(3):e20229. https://doi.org/10.1002/tpg2.20229

    Article  CAS  PubMed  Google Scholar 

  40. Liang C, Cai Q, Wang F, Li SF, You CJ, Xu C, Gao L, Cao DC, Lan T, Zhang BL, Mo BXX, Chen XM (2022) Arabidopsis RBV is a conserved WD40 repeat protein that promotes microRNA biogenesis and ARGONAUTE1 loading. Nat Commun 13(1):1217. https://doi.org/10.1038/s41467-022-28872-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rai KK, Singh S, Rai R, Rai LC (2022) Functional characterization of two WD40 family proteins, Alr0671 and All2352, from Anabaena PCC 7120 and deciphering their role in abiotic stress management. Plant Mol Biol 110(6):545–563. https://doi.org/10.1007/s11103-022-01306-4

    Article  CAS  PubMed  Google Scholar 

  42. Ji XL, Zhang M, Wang D, Li Z, Lang S, Song XS (2022) Genome-wide identification of WD40 superfamily in Cerasus Humilis and functional characteristics of ChTTG1. Int J Biol Macromol 225:376–388. https://doi.org/10.1016/j.ijbiomac.2022.11.074

    Article  CAS  PubMed  Google Scholar 

  43. Shan XT, Li YQ, Yang S, Gao RF, Zhou LD, Bao TT, Han TT, Wang SC, Gao X, Wang L (2019) A functional homologue of Arabidopsis TTG1 from Freesia interacts with bHLH proteins to regulate anthocyanin and proanthocyanidin biosynthesis in both Freesia Hybrida and Arabidopsis thaliana. Plant Physiol Biochem 141:60–72. https://doi.org/10.1016/j.plaphy.2019.05.015

    Article  CAS  PubMed  Google Scholar 

  44. Guo H, Sun L, Xu J, Liu F, Li R, Zhang P (2022) Comparative transcriptomic analysis identified the genes involved in anthocyanin accumulation in Perilla frutescens. Russ J Plant Physiol 69(6). https://doi.org/10.1134/S1021443722060309

  45. Sompornpailin K, Makita Y, Yamazaki M, Saito K (2002) A WD-repeat-containing putative regulatory protein in anthocyanin biosynthesis in Perilla frutescens. Plant Mol Biol 50(3):485–495. https://doi.org/10.1023/A:1019850921627

    Article  CAS  PubMed  Google Scholar 

  46. Zhao D, Tao J (2015) Recent advances on the development and regulation of flower color in ornamental plants. Front Plant Sci 6:261. https://doi.org/10.3389/fpls.2015.00261

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shimizu K, Ohnishi N, Morikawa N, Ishigami A, Otake S, Rabah IO, Sakata Y, Hashimoto F (2011) A 94-bp deletion of anthocyanidin synthase gene in acyanic flower lines of lisianthus Eustoma grandiflorum (raf.) Shinn. J Jap Soc Hortic Sci 80(4):434–442. https://doi.org/10.2503/jjshs1.80.434

    Article  CAS  Google Scholar 

  48. Tanaka Y, Brugliera F (2013) Flower colour and cytochromes P450. Philosophical Trans Royal Soc B: Biol Sci 368(1612):20120432. https://doi.org/10.1098/rstb.2012.0432

    Article  CAS  Google Scholar 

  49. Zhao D, Tao J, Han C, Ge J (2012) Flower color diversity revealed by differential expression of flavonoid biosynthetic genes and flavonoid accumulation in herbaceous peony (Paeonia lactiflora Pall). Mol Biol Rep 39(12):11263–11275. https://doi.org/10.1007/s11033-012-2036-7

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Scientific Research Project of Hunan Provincial Department of Education (22B0261) and the Central Finance Forestry Science and Technology Promotion Demonstration Fund Project ([2022] XT16).

Author information

Authors and Affiliations

Authors

Contributions

J.G. and Y.W. contributed equally to this manuscript. J.P. and S.C. conceived and designed the research. J.G., Y.W., C.X., L.W. and M.W. conducted the experiments. J.G. and Y.W. analyzed the data. J.G., Y.W., S.S., J.P. and S.C. contributed to the writing of the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Jiqing Peng or Shoujin Cao.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors give their consent to publish.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Wang, Y., Xue, C. et al. Regulation of blue infertile flower pigmentation by WD40 transcription factor HmWDR68 in Hydrangea macrophylla ‘forever summer’. Mol Biol Rep 51, 328 (2024). https://doi.org/10.1007/s11033-024-09287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09287-x

Keywords

Navigation