Skip to main content
Log in

Mapping of adult plant recessive resistance to anthracnose in Indian common bean landrace Baspa/KRC 8

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The common bean (Phaseolus vulgaris) has become the food of choice owing to its wealthy nutritional profile, leading to a considerable increase in its cultivation worldwide. However, anthracnose has been a major impediment to production and productivity, as elite bean cultivars are vulnerable to this disease. To overcome barriers in crop production, scientists worldwide are working towards enhancing the genetic diversity of crops. One way to achieve this is by introducing novel genes from related crops, including landraces like KRC 8. This particular landrace, found in the North Western Himalayan region, has shown adult plant resistance against anthracnose and also possesses a recessive resistance gene.

Methods and results

In this study, a population of 179 F2:9 RIL individuals (Jawala × KRC 8) was evaluated at both phenotypic and genotypic levels using over 830 diverse molecular markers to map the resistance gene present in KRC 8. We have successfully mapped a resistance gene to chromosome Pv01 using four SSR markers, namely IAC 238, IAC 235, IAC 259, and BM 146. The marker IAC 238 is closely linked to the gene with a distance of 0.29 cM, while the other markers flank the recessive resistance gene at 10.87 cM (IAC 259), 17.80 cM (BM 146), and 25.22 cM (IAC 235). Previously, a single recessive anthracnose resistance gene (co-8) has been reported in the common bean accession AB 136. However, when we performed PCR amplification with our tightly linked marker IAC 238, we got different amplicons in AB 136 and KRC 8. Interestingly, the susceptible cultivar Jawala produced the same amplicon as AB 136. This observation indicated that the recessive gene present in KRC 8 is different from co-8. As the gene is located far away from the Co-1 locus, we suggest naming the recessive gene co-Indb/co-19. Fine mapping of co-Indb in KRC 8 may provide new insights into the cloning and characterization of this recessive gene so that it can be incorporated into future bean improvement programs. Further, the tightly linked marker IAC 238 can be utilized in marker assisted introgression in future bean breeding programs.

Conclusion

The novel co-Indb gene present in Himalayan landrace KRC 8, showing adult plant resistance against common bean anthracnose, is independent from all the resistance genes previously located on chromosome Pv01.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data sets generated in the current study are available in the supplementary files and additional information if needed can be obtained from corresponding author on reasonable request.

References

  1. Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)–model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  2. Nadeem MA, Yeken MZ, Shahid MQ, Habyarimana E, Yılmaz H, Alsaleh A et al (2021) Common bean as a potential crop for future food security: an overview of past, current and future contributions in genomics, transcriptomics, transgenics and proteomics. Biotechnol Biotechnol Equip 35:759–787

    Article  CAS  Google Scholar 

  3. Fernández MT, Fernández M, Casares A, Rodriguez R, Fueyo M (2000) Bean germplasm evaluation for anthracnose resistance and characterization of agronomic traits: a new physiological strain of Colletotrichum lindemuthianum infecting Phaseolus vulgaris L. in Spain. Euphytica 114:143–149

    Article  Google Scholar 

  4. Kumar A, Sharma PN, Sharma OP, Tyagi PD (1999) Epidemiology of bean anthracnose Colletotrichum lindemuthianum under sub-humid mid-hills zone of Himachal Pradesh. Indian Phytopath 52:393–397

    Google Scholar 

  5. Sharma PN, Sharma OP, Padder BA, Kapil R (2008) Yield loss assessment in common bean due to anthracnose (Colletotrichum lindemuthianum) under sub-temperate conditions of North-Western Himalayas. Indian Phytopath 61:323–330

    Google Scholar 

  6. Nunes MPBA, Gonçalves-Vidigal MC, Martins VS, Xavier LF, Valentini G, Vaz Bisneta M et al (2021) Relationship of Colletotrichum lindemuthianum races and resistance loci in the Phaseolus vulgaris L. genome. Crop Sci 61:3877–3893

    Article  CAS  Google Scholar 

  7. Padder BA, Sharma PN, Awale H, Kelly JD (2017) Colletotrichum lindemuthiam the casual agent of bean anthracnose. J Plant Pathol 99:317–330

    Google Scholar 

  8. Nabi A, Lateef I, Nisa Q, Banoo A, Rasool RS, Shah M et al (2022) Phaseolus vulgaris-colletotrichum lindemuthianum pathosystem in the post-genomic era: an update. Curr Microbiol 79:1–13

    Article  Google Scholar 

  9. Banoo A, Nabi A, Rasool RS, Shah MD, Wani MF, Ahmad M et al (2020) North-western Himalayan common beans: population structure and mapping of quantitative anthracnose resistance through genome wide association study. Front Plant Sci 11:571618

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ferreira JJ, Campa A, Kelly JD (2013) Organization of genes conferring resistance to anthracnose in common bean. In: Varshney RK, Tuberosa R (eds) Translational genomics for crop breeding. John Wiley & Sons, Inc, Ames

    Google Scholar 

  11. Geffroy V, Sevignac M, Billant P, Dron M, Langin T (2008) Resistance to Colletotrichum lindemuthianum in Phaseolus vulgaris: a case study for mapping two Independent genes. Theor Appl Genet 116:407–415

    Article  CAS  PubMed  Google Scholar 

  12. Campa A, Rodriguez-Suarez C, Giraldez R, Ferreira JJ (2014) Genetic analysis of the response to eleven Colletotrichum lindemuthianum races in a RIL population of common bean (Phaseolus vulgaris L.). BMC Plant Biol 14:115

    Article  PubMed  PubMed Central  Google Scholar 

  13. Paugh KR, Gordon TR (2020) The population of Fusarium oxysporum f. sp. lactucae in California and Arizona. Plant Dis 104:1811–1816

    Article  PubMed  Google Scholar 

  14. Richard MMS, Pflieger S, Sevignac M, Thareau V, Blanchet S, Li YP et al (2014) Fine mapping of Co-x, an anthracnose resistance gene to a highly virulent strain of Colletotrichum lindemuthianum in common bean. Theor Appl Genet 127:1653–1666

    Article  CAS  PubMed  Google Scholar 

  15. Oblessuc PR, Borges A, Chowdhury B, Caldas DGG, Tsai SM, Camargo LEA et al (2012) Dissecting Phaseolus vulgaris innate immune system against Colletotrichum lindemuthianum infection. PLoS One 7:e43161

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Maldonado-Mota CR, Moghaddam SM, Schroder S, Hurtado-Gonzales OP, McClean PE, Pasche JS et al (2021) Genomic regions associated with resistance to anthracnose in the Guatemalan climbing bean (Phaseolus vulgaris L.) germplasm collection. Genetic Resour Crop Evol 68:1073–1083

    Article  CAS  Google Scholar 

  17. Bisneta MV, Gonçalves-Vidigal MC (2020) Integration of anthracnose resistance loci and RLK and NBS-LRR-encoding genes in the Phaseolus vulgaris L. genome. Crop Sci 60:2901–2918

    Article  Google Scholar 

  18. Gilio TAS, Goncalves-Vidigal MC, Valentini G, Ferreira Elias JC, Song Q et al (2020) Fine mapping of an anthracnose-resistance locus in Andean common bean cultivar Amendoim Cavalo. PLoS One 15:e0239763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gonçalves-Vidigal M, Gilio T, Valentini G, Vaz-Bisneta M, Vidigal Filho P, Song Q et al (2020) New Andean source of resistance to anthracnose and angular leaf spot: fine-mapping of disease-resistance genes in California dark red kidney common bean cultivar. PLoS One 15:e0235215

    Article  PubMed  PubMed Central  Google Scholar 

  20. Singh SP, Terán H, Muñoz CG, Takegami JC (1999) Two cycles of recurrent selection for seed yield in common bean. Crop Sci 39:391–397

    Article  Google Scholar 

  21. Richard MMS, Gratias A, Alvarez Diaz JC, Thareau V, Pflieger S, Meziadi C et al (2021) A common bean truncated CRINKLY4 kinase controls gene-for-gene resistance to the fungus Colletotrichum Lindemuthianum. J Exp Bot 72:3569–3581

    Article  CAS  PubMed  Google Scholar 

  22. Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Zeuli PS et al (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci USA 109:E788–E796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lima LRL, Gonçalves-Vidigal MC, Vaz Bisneta M, Valentini G, Vidigal Filho PS, Martins VSR et al (2023) Genetic fine-mapping of anthracnose disease-resistance allele Co-14 present in the Andean common bean cultivar AND 277. Crop Sci 63:750–763

    Article  CAS  Google Scholar 

  24. Alzate-Marin AL, Baia GS, De Paula TJ, De Carvalho GA, De Barros EG, Moreira MA (1997) Inheritance of anthracnose resistance in common bean differential cultivar AB 136. Plant Dis Agric 81:996–998

    Article  Google Scholar 

  25. Alzate-Marin AL, Costa MR, Sartorato A, Rava CA, Barros EGd, Moreira MA (2001) Use of markers as a tool to investigate the presence of disease resistance genes in common bean cultivars. Crop Breed Appl Biotechnol 1:125–133

    Article  Google Scholar 

  26. Oblessuc PR, Baroni RM, Pereira GD, Chiorato AF, Carbonell SAM, Brinez B et al (2014) Quantitative analysis of race-specific resistance to Colletotrichum lindemuthianum in common bean. Mol Breed 34:1313–1329

    Article  CAS  Google Scholar 

  27. Mungalu H, Sansala M, Hamabwe S, Mukuma C, Gepts P, Kelly JD et al (2020) Identification of race-specific quantitative trait loci for resistance to Colletotrichum lindemuthianum in an andean population of common bean. Crop Sci 60:2843–2856

    Article  CAS  Google Scholar 

  28. Zuiderveen GH, Padder BA, Kamfwa K, Song Q, Kelly JD (2016) Genome-wide association study of anthracnose resistance in Andean beans (Phaseolus vulgaris). PLoS ONE 11:e0156391

    Article  PubMed  PubMed Central  Google Scholar 

  29. Geffroy V, Sévignac M, De Oliveira JC, Fouilloux G, Skroch P, Thoquet P et al (2000) Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol Plant-Microbe Interact 13:287–296

    Article  CAS  PubMed  Google Scholar 

  30. Ge C, Wentzel E, D’Souza N, Chen K, Oliver RP, Ellwood SR (2021) Adult resistance genes to barley powdery mildew confer basal penetration resistance associated with broad-spectrum resistance. Plant Genome 14:e20129

    Article  CAS  PubMed  Google Scholar 

  31. Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A et al (1997) The barley mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  32. Deslandes L, Olivier J, Theulières F, Hirsch J, Feng DX, Bittner-Eddy P et al (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci 99:2404–2409

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Chu Z, Fu B, Yang H, Xu C, Li Z, Sanchez A et al (2006) Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet 112:455–461

    Article  CAS  PubMed  Google Scholar 

  34. Iyer AS, McCouch SR (2004) The rice bacterial blight resistance gene xa5 encodes a novel form of Disease resistance. Mol Plant-Microbe Interact 17:1348–1354

    Article  CAS  PubMed  Google Scholar 

  35. Jiang G-H, Xia Z-H, Zhou Y-L, Wan J, Li D-Y, Chen R-S et al (2006) Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1. Mol Genet Genom 275:354–366

    Article  CAS  Google Scholar 

  36. Sharma PN, Diaz LM, Blair MW (2013) Genetic diversity of two Indian common bean germplasm collections based on morphological and microsatellite markers. Plant Genetic Resour 11:121–130

    Article  CAS  Google Scholar 

  37. Sharma P, Sugha S, Panwar K, Sagwal J (1993) Reaction of landraces and exotic collections of kidney bean (Phaseolus vulgaris) to anthracnose (Colletotrichum lindemuthianum). Indian J Agric Sci 63:456–457

    Google Scholar 

  38. Pathania A, Sharma PN, Sharma OP, Chahota RK, Bilal A, Sharma P (2006) Evaluation of resistance sources and inheritance of resistance in kidney bean to Indian virulences of Colletotrichum lindemuthianum. Euphytica 149:97–103

    Article  Google Scholar 

  39. Padder BA, Sharma PN, Sharma OP (2010) Distribution of Colletotrichum lindemuthianum race flora and its implication in deployment of resistant sources across Himachal Pradesh. Res J Agric Sci 1:1–6

    Google Scholar 

  40. Katoch S, Katoch A, Dhiman S, Sharma P, Rana S, Sharma P (2019) Recitation of R genes identified in common bean landrace KRC-5 and KRC-8 native to Himachal Pradesh against Colletotrichum lindemuthianum virulences. Himachal J Agric Res 45:51–56

    Google Scholar 

  41. Dhiman S, Badiyal A, Katoch S, Pathania A, Singh A, Rathour R et al (2022) Insights on atypical adult plant resistance phenomenon in Andean bean cultivar baspa (KRC-8) to Colletotrichum Lindemuthianum, the bean anthracnose pathogen. Euphytica 218:77

    Article  CAS  Google Scholar 

  42. Sharma PN, Kapila RK, Sharma OP, Deepika S (2000) Inheritance of resistance in two Indian land races of Phaseolus vulgaris to Colletotrichum lindemuthianum. Indian Phytopath 53:83–86

    Google Scholar 

  43. Kelly JD, Vallejo VA (2004) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience 39:1196–1207

    Article  CAS  Google Scholar 

  44. Mathur R, Barnett H, Lilly V (1950) Sporulation of Colletotrichum lindemuthianum in culture. Phytopathology 40:104–114

    CAS  Google Scholar 

  45. Mahiya-Farooq Padder BA, Bhat NN, Shah M, Shikari AB, Awale HE et al (2019) Temporal expression of candidate genes at the Co-1 locus and their interaction with other defense related genes in common bean. Physiol Mol Plant Pathol 108:101424

    Article  Google Scholar 

  46. Bigirimana J, Hofte M (2001) Bean anthracnose: inoculation methods and influence of plant stage on resistance of Phaseolus vulgaris cultivars. J Phytopathol 149:403–408

    Article  Google Scholar 

  47. Krüger J, Hoffmann G, Hubbeling N (1977) The kappa race of Colletotrichum lindemuthianum and sources of resistance to anthracnose in Phaseolus beans. Euphytica 26:23–25

    Article  Google Scholar 

  48. Pastor-Corrales MA, Otoya MM, Molina A, Singh SP (1995) Resistance to Colletotrichum lindemuthianum isolates from middle America and Andean South America in different common bean races. Plant Dis 79:63

    Article  Google Scholar 

  49. Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Blair MW, Pedraza F, Buendia H, Gaitán-Solís E, Beebe SE, Gepts P et al (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  CAS  PubMed  Google Scholar 

  51. Córdoba JM, Chavarro C, Schlueter JA, Jackson SA, Blair MWJB (2010) Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genom 11:1–10

    Article  Google Scholar 

  52. Yu K, Park S, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434

    Article  CAS  PubMed  Google Scholar 

  53. Chen M, Wu J, Wang L, Mantri N, Zhang X, Zhu Z et al (2017) Mapping and genetic structure analysis of the anthracnose resistance locus Co-1HY in the common bean (Phaseolus vulgaris L.). PLoS One 12:e0169954

    Article  PubMed  PubMed Central  Google Scholar 

  54. Grisi M, Blair MW, Gepts P, Brondani C, Pereira PAA, Brondani RPV (2007) Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 x Jalo EEP558. Gen Mol Res 6:691–706

    CAS  Google Scholar 

  55. Blair MW, Buendía HF, Giraldo MC, Métais I, Peltier D (2008) Characterization of AT-rich microsatellites in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:91–103

    Article  CAS  PubMed  Google Scholar 

  56. Blair MW, Hurtado N, Sharma P (2012) New gene-derived simple sequence repeat markers for common bean (Phaseolus vulgaris L.). Mol Ecol Resour 12:661–668

    Article  CAS  PubMed  Google Scholar 

  57. Blair MW, Hurtado N, Chavarro CM, Muñoz-Torres MC, Giraldo MC, Pedraza F et al (2011) Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series. BMC Plant Biol 11:1–10

    Article  Google Scholar 

  58. Caixeta ET, Borém A, Kelly JD (2005) Development of microsatellite markers based on BAC common bean clones. Crop Breed Appl Biotechnol 5:1

    Article  Google Scholar 

  59. Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris) isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Sci 42:2128–2136

    Article  Google Scholar 

  60. Cardoso JMK, Oblessuc PR, Campos Td, Sforça DA, Carbonell SAM, Chioratto AF et al (2008) New microsatellite markers developed from an enriched microsatellite common bean library. Pesqui Agropecu Bras 43:929–936

    Article  Google Scholar 

  61. de Campos T, Oblessuc PR, Sforça DA, Cardoso JMK, Baroni RM, de Sousa ACB et al (2011) Inheritance of growth habit detected by genetic linkage analysis using microsatellites in the common bean (Phaseolus vulgaris L.). Mol Breed 27:549–560

    Article  Google Scholar 

  62. Buso GSC, Amaral ZPS, Brondani RPV, Ferreira ME (2006) Microsatellite markers for the common bean Phaseolus vulgaris. Mol Ecol Notes 6:252–254

    Article  CAS  Google Scholar 

  63. Moghaddam SM, Song Q, Mamidi S, Schmutz J, Lee R, Cregan P et al (2014) Developing market class specific InDel markers from next generation sequence data in Phaseolus vulgaris L. Front Plant Sci 5:185

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kosambi DD (1943) The estimation of map distances from recombination values. Annals Eugen 12:172–175

    Article  Google Scholar 

  65. Van Berloo R (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered 99:232–236

    Article  PubMed  Google Scholar 

  66. Pastor Corrales M (1996) Traditional and molecular confirmation of the coevolution of beans and pathogens in Latin America. Bean Improvement Cooperative, USA, p 39

    Google Scholar 

  67. Vidigal Filho PS, Goncalves-Vidigal MC, Kelly JD, Kirk WW (2007) Sources of resistance to anthracnose in traditional common bean cultivars from Parana, Brazil. J Phytopathol 155:108–113

    Article  Google Scholar 

  68. Goncalves-Vidigal MC, Lacanallo GF, Vidigal Filho PS (2008) A new gene conferring resistance to anthracnose in Andean common bean (Phaseolus vulgaris L.) cultivar ‘Jalo Vermelho.’ Plant Breed 127:592–596

    Article  Google Scholar 

  69. Alzate-Marin AL, Costa MR, Arruda KM, Barros EGd, Moreira MA (2003) Characterization of the anthracnose resistance gene present in ouro negro (Honduras 35) common bean cultivar. Euphytica 133:165–169

    Article  CAS  Google Scholar 

  70. Young RA, Kelly JD (1996) Characterization of the genetic resistance to Colletotrichum lindemuthianum in common bean differential cultivars. Plant Dis 80:650–654

    Article  Google Scholar 

  71. Meziadi C, Richard MM, Derquennes A, Thareau V, Blanchet S, Gratias A et al (2016) Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Sci 242:351–357

    Article  CAS  PubMed  Google Scholar 

  72. Murube E, Campa A, Ferreira JJ (2019) Integrating genetic and physical positions of the anthracnose resistance genes described in bean chromosomes Pv01 and Pv04. PLoS One 14:e0212298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Valentini G, Gonçalves-Vidigal MC, Hurtado-Gonzales OP, de Lima Castro SA, Cregan PB, Song Q et al (2017) High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot Diseases. Theor Appl Genet 130:1705–1722

    Article  CAS  PubMed  Google Scholar 

  74. Dinglasan E, Periyannan S, Hickey LT (2022) Harnessing adult-plant resistance genes to deploy durable disease resistance in crops. Essays Biochem 88:571–580

    Google Scholar 

  75. Skoppek CI, Punt W, Heinrichs M, Ordon F, Wehner G, Boch J et al (2022) The barley HvSTP13GR mutant triggers resistance against biotrophic fungi. Mol Plant Pathol 23:278–290

    Article  CAS  PubMed  Google Scholar 

  76. Dinglasan EG, Peressini T, Marathamuthu KA, See PT, Snyman L, Platz G et al (2021) Genetic characterization of adult-plant resistance to tan spot (syn, yellow spot) in wheat. Theor Appl Genet 134:2823–2839

    Article  CAS  PubMed  Google Scholar 

  77. Marla SR, Chu K, Chintamanani S, Multani DS, Klempien A, DeLeon A et al (2018) Adult plant resistance in maize to northern leaf spot is a feature of partial loss-of-function alleles of Hm1. PLoS Path 14:e1007356

    Article  Google Scholar 

  78. Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21:507–517

    Article  CAS  PubMed  Google Scholar 

  79. Padder BA, Kamfwa K, Awale HE, Kelly JD (2016) Transcriptome profiling of the Phaseolus vulgaris-colletotrichum lindemuthianum pathosystem. PLoS One 11:e0165823

    Article  PubMed  PubMed Central  Google Scholar 

  80. Schumann U, Lee JM, Smith NA, Zhong C, Zhu J-K, Dennis ES et al (2019) DEMETER plays a role in DNA demethylation and disease response in somatic tissues of Arabidopsis. Epigenetics 14:1074–1087

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zeng W, Huang H, Lin X, Zhu C, Ki Kosami, Huang C et al (2021) Roles of DEMETER in regulating DNA methylation in vegetative tissues and pathogen resistance. J Integr Plant Biol 63:691–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sharma PN, Padder BA, Sharma OP, Pathania A, Sharma P (2007) Pathological and molecular diversity in Colletotrichum lindemuthianum (bean anthracnose) across Himachal Pradesh, a north-western himalayan state of India. Australas Plant Pathol 36:191–197

    Article  CAS  Google Scholar 

  83. Sharma N, Kumari N, Sharma SK, Padder BA, Sharma PN (2019) Investigating the virulence and genetic diversity of Colletotrichum lindemuthianum populations distributed in the North Western Himalayan hill states. J Plant Pathol 101:677–688

    Article  Google Scholar 

Download references

Funding

The corresponding author thank Department of Biotechnology, Government of India (Grant No: BT/PR38582/AGRIII/103/1245/2020) for financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed in the study. The study was conceptualized by PNS, BAP and RR. AB, SD and SK performed the phenotyping and genotyping. AB, AS and AP developed RIL population. AB, BAP wrote the first draft. BAP and PNS edited the manuscript. RR helped in linkage map construction.

Corresponding authors

Correspondence to Bilal A. Padder or Prem N. Sharma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badiyal, A., Dhiman, S., Singh, A. et al. Mapping of adult plant recessive resistance to anthracnose in Indian common bean landrace Baspa/KRC 8. Mol Biol Rep 51, 254 (2024). https://doi.org/10.1007/s11033-023-09160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09160-3

Keywords

Navigation