Skip to main content

Advertisement

Log in

Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

While global climate change poses a significant environmental threat to agriculture, the increasing population is another big challenge to food security. To address this, developing crop varieties with increased productivity and tolerance to biotic and abiotic stresses is crucial. Breeders must identify traits to ensure higher and consistent yields under inconsistent environmental challenges, possess resilience against emerging biotic and abiotic stresses and satisfy customer demands for safer and more nutritious meals. With the advent of omics-based technologies, molecular tools are now integrated with breeding to understand the molecular genetics of genotype-based traits and develop better climate-smart crops. The rapid development of omics technologies offers an opportunity to generate novel datasets for crop species. Identifying genes and pathways responsible for significant agronomic traits has been made possible by integrating omics data with genetic and phenotypic information. This paper discusses the importance and use of omics-based strategies, including genomics, transcriptomics, proteomics and phenomics, for agricultural and horticultural crop improvement, which aligns with developing better adaptability in these crop species to the changing climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. FAO (1983) World food security: a reappraisal of the concepts and approaches. FAO, Rome

    Google Scholar 

  2. Husaini AM, Sohail M (2023) Robotics-assisted, organic agricultural-biotechnology based environment-friendly healthy food option: beyond the binary of GM versus organic crops. J Biotechnol 361:41–48

    Article  PubMed  Google Scholar 

  3. Husaini AM (2022) High-value pleiotropic genes for developing multiple stress-tolerant biofortified crops for 21st-century challenges. Heredity. https://doi.org/10.1038/s41437-022-00500-w

    Article  PubMed  PubMed Central  Google Scholar 

  4. Husaini AM, Tuteja N (2013) Biotech crops: imperative for achieving the Millenium development goals and sustainability of agriculture in the climate change era. GM Crops Food 4(1):1–9

    Article  PubMed  Google Scholar 

  5. Nilsson C, Polvi LE, Lind L (2015) Extreme events in streams and rivers in arctic and subarctic regions in an uncertain future. Freshw Biol 60(12):2535–2546

    Article  Google Scholar 

  6. Bates B, Kundzewicz Z, Wu S (2008) Climate change and water. Cambridge University Press, Cambridge

    Google Scholar 

  7. Scheffran J, Battaglini A (2011) Climate and conflicts: the security risks of global warming. Reg Environ Change 11(1):27–39

    Article  Google Scholar 

  8. Godfray HCJ et al (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  PubMed  Google Scholar 

  9. Duc G et al (2015) Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. Crit Rev Plant Sci 34(1–3):381–411

    Article  Google Scholar 

  10. Trienekens J, Zuurbier P (2008) Quality and safety standards in the food industry, developments and challenges. Int J Prod Econ 113(1):107–122

    Article  Google Scholar 

  11. Chen HS et al (2020) Consumer attitudes and purchase intentions toward food delivery platform services. Sustainability 12(23):10177

    Article  Google Scholar 

  12. Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14(4):1070–1085

    Article  PubMed  Google Scholar 

  13. Snowdon RJ et al (2021) Crop adaptation to climate change as a consequence of long-term breeding. Theor Appl Genet 134(6):1613–1623

    Article  PubMed  Google Scholar 

  14. Husaini AM (2014) Challenges of climate change: omics-based biology of saffron plants and organic agricultural biotechnology for sustainable saffron production. GM Crops Food 5(2):97–105

    Article  PubMed  PubMed Central  Google Scholar 

  15. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63(10):3523–3543

    Article  PubMed  Google Scholar 

  16. Zhang H et al (2022) Abiotic stress responses in plants. Nat Rev Genet 23(2):104–119

    Article  PubMed  Google Scholar 

  17. Deryng D et al (2011) Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochem Cycles. https://doi.org/10.1029/2009GB003765

    Article  Google Scholar 

  18. Jump AS, Marchant R, Peñuelas J (2009) Environmental change and the option value of genetic diversity. Trends Plant Sci 14(1):51–58

    Article  PubMed  Google Scholar 

  19. Dolferus R, Ji X, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181(4):331–341

    Article  PubMed  Google Scholar 

  20. Skendžić S et al (2021) The impact of climate change on agricultural insect pests. Insects 12(5):440

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deutsch CA et al (2018) Increase in crop losses to insect pests in a warming climate. Science 361(6405):916–919

    Article  PubMed  Google Scholar 

  22. Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9(6):444–457

    Article  PubMed  Google Scholar 

  23. Husaini AM (2021) Organic GMOs: combining ancient wisdom with modern biotechnology. In: Srivastava Kumar D, Thakur umar A, Kumar P (eds) Agricultural biotechnology: latest research and trends. Springer, Singapore, pp 323–328

    Chapter  Google Scholar 

  24. Husaini AM, Khurshid A (2021) Nanotechnology and robotics: the twin drivers of agriculture in future. In: Srivastava Kumar D, Thakur Kumar A, Kumar P (eds) Agricultural biotechnology: latest research and trends. Springer, Singapore, pp 553–571

    Chapter  Google Scholar 

  25. Raza A et al (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8(2):34

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3(4):458–475

    Article  PubMed  PubMed Central  Google Scholar 

  27. Husaini AM, Haq SAU, Jiménez AJL (2022) Understanding saffron biology using omics and bioinformatics tools: stepping towards a better Crocus phenome. Mol Biol Rep 49(6):5325–5340

    Article  PubMed  PubMed Central  Google Scholar 

  28. Imadi SR et al (2015) Plant transcriptomics and responses to environmental stress: an overview. J Genet 94(3):525–537

    Article  PubMed  Google Scholar 

  29. Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29(1):33–40

    Article  PubMed  Google Scholar 

  30. Bashir T et al (2023) Quality trait improvement in horticultural crops: OMICS and modern biotechnological approaches. Mol Biol Rep 50:8729

    Article  PubMed  Google Scholar 

  31. Lobos GA et al (2017) Plant phenotyping and phenomics for plant breeding. Front Plant Sci 8:2181

    Article  PubMed  PubMed Central  Google Scholar 

  32. Husaini AM, Ashraf N (2010) Understanding saffron biology using bioinformatics tools. Funct Plant Sci Biotechnol 4(2):31–37

    Google Scholar 

  33. Husaini AM et al (2009) Bioinformatics for saffron (Crocus sativus L.) improvement. Commun Biometry Crop Sci 4(1):3–8

    Google Scholar 

  34. Haq SAU, Salami SA, Husaini AM (2022) Bioinformatics for saffron-omics and crop improvement. The saffron genome. Springer, Singapore, pp 63–82

    Chapter  Google Scholar 

  35. Haq SA, Salami SA, Husaini AM (2022) Omics in saffron (Crocus sativus L.): a spice of immense medicinal value. Omics in horticultural crops. Elsevier, Amsterdam, pp 573–587

    Chapter  Google Scholar 

  36. Scossa F, Alseekh S, Fernie AR (2021) Integrating multi-omics data for crop improvement. J Plant Physiol 257:153352

    Article  PubMed  Google Scholar 

  37. Mir RR et al (2019) High-throughput phenotyping for crop improvement in the genomics era. Plant Sci 282:60–72

    Article  PubMed  Google Scholar 

  38. Avise JC (2012) Molecular markers, natural history and evolution. Springer Science & Business Media, Berlin

    Google Scholar 

  39. Appleby N et al (2009) New technologies for ultra-high throughput genotyping in plants. Humana Press, Totowa, pp 19–39

    Google Scholar 

  40. Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10(8):565–577

    Article  PubMed  Google Scholar 

  41. Wani AB, Husaini AM (2021) Conventional approaches to rice improvement. In: Kearns HN (ed) Oryza sativa: production, cultivation and uses. Nova Science Publishers, New York

    Google Scholar 

  42. Guo T et al (2019) Integrating GWAS, QTL, mapping and RNA-seq to identify candidate genes for seed vigor in rice (Oryza sativa L.). Mol Breeding 39(6):1–16

    Article  Google Scholar 

  43. Boyles RE et al (2017) Genetic dissection of sorghum grain quality traits using diverse and segregating populations. Theor Appl Genet 130(4):697–716

    Article  PubMed  Google Scholar 

  44. Wu Q-H et al (2015) High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda 1817× Beinong6. PLoS ONE 10(2):e0118144

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tian X et al (2017) Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front Plant Sci 8:1379

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gao F et al (2015) Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci 6:1099

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tibbs Cortes L, Zhang Z, Yu J (2021) Status and prospects of genome-wide association studies in plants. Plant Genome 14(1):e20077

    Article  PubMed  Google Scholar 

  48. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17(2):155–160

    Article  PubMed  Google Scholar 

  49. Guo Z et al (2017) Genome-wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytol 214(1):257–270

    Article  PubMed  Google Scholar 

  50. Muqaddasi QH et al (2019) TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Sci Rep 9(1):1–12

    Article  Google Scholar 

  51. Yuan J et al (2020) Genetic basis and identification of candidate genes for salt tolerance in rice by GWAS. Sci Rep 10(1):1–9

    Article  Google Scholar 

  52. Yano K et al (2019) GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc Natl Acad Sci 116(42):21262–21267

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li X et al (2016) Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front Plant Sci 7:833

    PubMed  PubMed Central  Google Scholar 

  54. Wu X et al (2016) Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnol J 14(7):1551–1562

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li H et al (2019) Leveraging GWAS data to identify metabolic pathways and networks involved in maize lipid biosynthesis. Plant J 98(5):853–863

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang H et al (2019) Integrating GWAS and gene expression analysis identifies candidate genes for root morphology traits in maize at the seedling stage. Genes 10(10):773

    Article  PubMed  PubMed Central  Google Scholar 

  57. Poland JA et al (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci 108(17):6893–6898

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rhodes DH et al (2017) Genetic architecture of kernel composition in global sorghum germplasm. BMC Genomics 18(1):1–8

    Article  Google Scholar 

  59. Zhao J et al (2016) Genome-wide association study for nine plant architecture traits in Sorghum. Plant Genome. https://doi.org/10.3835/plantgenome2015.06.0044

    Article  PubMed  Google Scholar 

  60. Tao Y et al (2020) Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals. Plant Biotechnol J 18(4):1093–1105

    Article  PubMed  Google Scholar 

  61. Liller CB et al (2017) Fine mapping of a major QTL for awn length in barley using a multiparent mapping population. Theor Appl Genet 130(2):269–281

    Article  PubMed  Google Scholar 

  62. Wang J et al (2014) A new QTL for plant height in barley (Hordeum vulgare L.) showing no negative effects on grain yield. PLoS ONE 9(2):e90144

    Article  PubMed  PubMed Central  Google Scholar 

  63. Karunarathne SD et al (2020) Genome-wide association study and identification of candidate genes for nitrogen use efficiency in barley (Hordeum vulgare L.). Front Plant Sci. https://doi.org/10.3389/fpls.2020.571912

    Article  PubMed  PubMed Central  Google Scholar 

  64. Alqudah AM et al (2014) Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley. PLoS ONE 9(11):e113120

    Article  PubMed  PubMed Central  Google Scholar 

  65. Thabet SG et al (2020) Natural variation uncovers candidate genes for barley spikelet number and grain yield under drought stress. Genes 11(5):533

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mangin B et al (2017) Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modelling and genome-wide association. Plan Cell Environ 40(10):2276–2291

    Article  Google Scholar 

  67. Lasky JR et al (2015) Genome-environment associations in sorghum landraces predict adaptive traits. Sci Adv 1(6):e1400218

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shikha M et al (2017) Genomic selection for drought tolerance using genome-wide SNPs in maize. Front Plant Sci 8:550

    Article  PubMed  PubMed Central  Google Scholar 

  69. Millet EJ et al (2016) Genome-wide analysis of yield in Europe: allelic effects vary with drought and heat scenarios. Plant Physiol 172(2):749–764

    PubMed  PubMed Central  Google Scholar 

  70. Cameron DL, Di Stefano L, Papenfuss AT (2019) Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software. Nat Commun 10(1):1–11

    Article  Google Scholar 

  71. Padmarasu S et al (2019) In situ hi-C for plants: an improved method to detect long-range chromatin interactions. Plant long non-coding RNAs. Springer, pp 441–472

    Chapter  Google Scholar 

  72. Yuan Y, Chung CY-L, Chan T-F (2020) Advances in optical mapping for genomic research. Comput Struct Biotechnol J 18:2051–2062

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhu T et al (2021) Optical maps refine the bread wheat Triticum aestivum cv. Chinese spring genome assembly. Plant J 107(1):303–314

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wafai AH, Husaini AM, Qadri RA (2019) Temporal expression of floral proteins interacting with CArG1 region of CsAP3 gene in Crocus sativus L. Gene Rep 16:100446

    Article  Google Scholar 

  75. Pandit AA, Shah RA, Husaini AM (2018) Transcriptomics: a time-efficient tool with wide applications in crop and animal biotechnology. J Pharmac Phytochem 7:1701–1704

    Google Scholar 

  76. Hong W-J et al (2020) Systematic analysis of cold stress response and diurnal rhythm using transcriptome data in rice reveals the molecular networks related to various biological processes. Int J Mol Sci 21(18):6872

    Article  PubMed  PubMed Central  Google Scholar 

  77. Formentin E et al (2018) Transcriptome and cell physiological analyses in different rice cultivars provide new insights into adaptive and salinity stress responses. Front Plant Sci 9:204

    Article  PubMed  PubMed Central  Google Scholar 

  78. Muthuramalingam P et al (2017) Global transcriptome analysis of combined abiotic stress signaling genes unravels key players in Oryza sativa L.: an in silico approach. Front Plant Sci 8:759

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kawaura K et al (2006) Transcriptome analysis of salinity stress responses in common wheat using a 22k oligo-DNA microarray. Funct Integr Genomics 6(2):132–142

    Article  PubMed  Google Scholar 

  80. Zhang H et al (2014) Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC Genomics 15:1–14

    Article  Google Scholar 

  81. Nan W et al (2018) Transcriptomes of early developing tassels under drought stress reveal differential expression of genes related to drought tolerance in maize. J Integr Agric 17(6):1276–1288

    Article  Google Scholar 

  82. Wang M et al (2019) Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Genes Genomics 41(7):781–801

    Article  PubMed  Google Scholar 

  83. Li P et al (2017) Transcriptomic profiling of the maize (Zea mays L.) leaf response to abiotic stresses at the seedling stage. Front Plant Sci 8:290

    PubMed  PubMed Central  Google Scholar 

  84. Janiak A et al (2019) Insights into barley root transcriptome under mild drought stress with an emphasis on gene expression regulatory mechanisms. Int J Mol Sci 20(24):6139

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kreszies T et al (2019) Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytol 221(1):180–194

    Article  PubMed  Google Scholar 

  86. Punia H et al (2020) Proteome dynamics and transcriptome profiling in sorghum [Sorghum bicolor (L.) Moench] under salt stress. 3 Biotech 10(9):1–10

    Article  Google Scholar 

  87. Leisner CP, Yendrek CR, Ainsworth EAJBPB (2017) Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress. BMC Plant Biol 17(1):1–11

    Article  Google Scholar 

  88. Shen W et al (2019) Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics 111(5):1142–1151

    Article  PubMed  Google Scholar 

  89. Ruan MB et al (2017) Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta). J Exp Botany 68(13):3657–3672

    Article  Google Scholar 

  90. Guo WL et al (2018) Transcriptome profiling of pumpkin (Cucurbita moschata Duch) leaves infected with powdery mildew. PLoS ONE 13(1):e0190175

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhang Z et al (2023) Transcriptome sequence analysis of defense response of resistant and susceptible bottle gourd to powdery mildew. Agronomy 13(5):1406

    Article  Google Scholar 

  92. Li J et al (2016) Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnol J 14(10):1956–1975

    Article  PubMed  PubMed Central  Google Scholar 

  93. Misra P et al (2010) Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol 152(4):2258–2268

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wu J et al (2010) Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol 10:1–16

    Article  Google Scholar 

  95. Chen T et al (2013) Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS ONE 8(11):e80816

    Article  PubMed  PubMed Central  Google Scholar 

  96. Seo JK et al (2018) Molecular dissection of distinct symptoms induced by tomato chlorosis virus and tomato yellow leaf curl virus based on comparative transcriptome analysis. Virology 516(1):20

    Google Scholar 

  97. Song L et al (2022) Transcriptome profiling unravels the involvement of phytohormones in tomato resistance to the tomato yellow leaf curl virus (TYLCV). Horticulturae 8(2):143

    Article  Google Scholar 

  98. Zhu Y et al (2022) Comparative transcriptome analysis reveals differential gene expression in resistant and susceptible watermelon varieties in response to meloidogyne incognita. Front Plant Sci 12(7):1003

    Google Scholar 

  99. Zhu YN et al (2013) Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS ONE 8(11):e80218

    Article  PubMed  PubMed Central  Google Scholar 

  100. He P et al (2017) The PIN gene family in cotton (Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses. BMC Genomics 18:1–10

    Article  Google Scholar 

  101. Lowe R et al (2017) Transcriptomics technologies. PLoS Comput Biol 13(5):e1005457

    Article  PubMed  PubMed Central  Google Scholar 

  102. Guénin S et al (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60(2):487–493

    Article  PubMed  Google Scholar 

  103. Velculescu VE et al (1995) Serial analysis of gene expression. Science 270(5235):484–487

    Article  PubMed  Google Scholar 

  104. Hardiman G (2004) Microarray platforms–comparisons and contrasts. Pharmacogenomics 5(5):487–502

    Article  PubMed  Google Scholar 

  105. Zhao S et al (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS ONE 9(1):e78644

    Article  PubMed  PubMed Central  Google Scholar 

  106. Knierim E et al (2011) Systematic comparison of three methods for fragmentation of long-range PCR products for next generation sequencing. PLoS ONE 6(11):e28240

    Article  PubMed  PubMed Central  Google Scholar 

  107. Rasmussen S et al (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161(4):1783–1794

    Article  PubMed  PubMed Central  Google Scholar 

  108. De Vos M et al (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-microbe Interact 18(9):923–937

    Article  PubMed  Google Scholar 

  109. Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7(6):391–403

    Article  PubMed  Google Scholar 

  110. Wilkins MR et al (2008) Proteome research: concepts, technology and application. Springer Science & Business Media, Berlin

    Google Scholar 

  111. Wu Y et al (2016) Quantitative proteomic analysis of two different rice varieties reveals that drought tolerance is correlated with reduced abundance of photosynthetic machinery and increased abundance of ClpD1 protease. J Proteomics 143:73–82

    Article  PubMed  Google Scholar 

  112. Ji Z et al (2019) Proteomic dissection of the rice-Fusarium fujikuroi interaction and the correlation between the proteome and transcriptome under disease stress. BMC Genomics 20(1):1–11

    Article  Google Scholar 

  113. Frukh A et al (2020) Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiol Biochem 146:55–70

    Article  PubMed  Google Scholar 

  114. Hussain S et al (2019) iTRAQ-based protein profiling and biochemical analysis of two contrasting rice genotypes revealed their differential responses to salt stress. Int J Mol Sci 20(3):547

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hao P et al (2015) An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. Proteomics 15(9):1544–1563

    Article  PubMed  Google Scholar 

  116. Maytalman D et al (2013) Proteomic analysis of early responsive resistance proteins of wheat (Triticum aestivum) to yellow rust (Puccinia striiformis f. sp. tritici) using ProteomeLab PF2D. Plant Omics 6(1):24–35

    Google Scholar 

  117. Kacem N et al (2016) Diagonal two-dimensional electrophoresis (D-2DE): a new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.). Mol Biol Rep 43(9):897–909

    Article  PubMed  Google Scholar 

  118. Yang Y et al (2016) Correction: corrigendum: quantitative proteomics reveals the defense response of wheat against Puccinia striiformis f. sp. tritici. Sci Rep 6(1):38464

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zeng W et al (2019) Comparative proteomics analysis of the seedling root response of drought-sensitive and drought-tolerant maize varieties to drought stress. Int J Mol Sci 20(11):2793

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wang X et al (2019) Comparative proteomics and physiological analyses reveal important maize filling-kernel drought-responsive genes and metabolic pathways. Int J Mol Sci 20(15):3743

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zenda T et al (2018) Comparative proteomic and physiological analyses of two divergent maize inbred lines provide more insights into drought-stress tolerance mechanisms. Int J Mol Sci 19(10):3225

    Article  PubMed  PubMed Central  Google Scholar 

  122. Dang M et al (2019) Proteomic changes during MCMV infection revealed by iTRAQ quantitative proteomic analysis in maize. Int J Mol Sci 21(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhang XL et al (2014) Proteomics identification of differentially expressed leaf proteins in response to Setosphaeria turcica infection in resistant maize. J Integr Agric 13(4):789–803

    Article  Google Scholar 

  124. Jadhav K et al (2018) Proteomic analysis of a compatible interaction between sorghum downy mildew pathogen (Peronosclerospora sorghi) and maize (Zea mays L.). Int J Curr Microbiol Appl Sci 7:653–670

    Article  Google Scholar 

  125. Eggert K, Pawelzik E (2011) Proteome analysis of Fusarium head blight in grains of naked barley (Hordeum vulgare subsp. nudum). Proteomics 11(5):972–985

    Article  PubMed  Google Scholar 

  126. Zhu J et al (2020) Understanding mechanisms of salinity tolerance in barley by proteomic and biochemical analysis of near-isogenic lines. Int J Mol Sci 21(4):1516

    Article  PubMed  PubMed Central  Google Scholar 

  127. Roy SK et al (2016) Morpho-physiological and proteome level responses to cadmium stress in sorghum. PLoS ONE 11(2):e0150431

    Article  PubMed  PubMed Central  Google Scholar 

  128. Tamhane VA et al (2021) Label-free quantitative proteomics of Sorghum bicolor reveals the proteins strengthening plant defense against insect pest Chilo partellus. Proteome Sci 19(1):1–25

    Article  Google Scholar 

  129. Arefian M et al (2019) Comparative proteomics and gene expression analyses revealed responsive proteins and mechanisms for salt tolerance in chickpea genotypes. BMC Plant Biol 19(1):1–26

    Article  Google Scholar 

  130. Katam R et al (2020) Proteomics, physiological, and biochemical analysis of cross tolerance mechanisms in response to heat and water stresses in soybean. PLoS ONE 15(6):e0233905

    Article  PubMed  PubMed Central  Google Scholar 

  131. Alam I et al (2011) Comparative proteomic approach to identify proteins involved in flooding combined with salinity stress in soybean. Plant Soil 346(45):62

    Google Scholar 

  132. Di Carli M et al (2010) Proteomic analysis of the plant− virus interaction in cucumber mosaic virus (CMV) resistant transgenic tomato. J Proteome Res 9(11):5684–5697

    Article  PubMed  Google Scholar 

  133. Huang Y et al (2016) Comparative proteomic analysis provides novel insight into the interaction between resistant vs susceptible tomato cultivars and TYLCV infection. BMC Plant Biol 16(1):21

    Article  Google Scholar 

  134. Milli A et al (2012) Proteomic analysis of the compatible interaction between Vitis vinifera and Plasmopara viticola. J Proteom 75(4):1284–1302

    Article  Google Scholar 

  135. Ribeiro DG et al (2023) Proteomic insights of cowpea response to combined biotic and abiotic stresses. Plants 12:1900

    Article  PubMed  PubMed Central  Google Scholar 

  136. Yuan L et al (2019) Comparative proteomics indicates that redox homeostasis is involved in high-and low-temperature stress tolerance in a novel Wucai (Brassica campestris L.) genotype. Int J Mol Sci 20(15):3760

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zhan Y et al (2019) Comparative proteomic analysis of okra (Abelmoschus esculentus L.) seedlings under salt stress. BMC Genomics 20(1):1–12

    Article  Google Scholar 

  138. Zhu X et al (2019) Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature. BMC Plant Biol 19(1):1–20

    Article  Google Scholar 

  139. Ashwin N et al (2017) Advances in proteomic technologies and their scope of application in understanding plant–pathogen interactions. J Plant Biochem Biotechnol 26(4):371–386

    Article  Google Scholar 

  140. Altelaar A, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14(1):35–48

    Article  PubMed  Google Scholar 

  141. Eldakak M et al (2013) Proteomics: a biotechnology tool for crop improvement. Front Plant Sci 4:35

    Article  PubMed  PubMed Central  Google Scholar 

  142. Tan BC, Lim YS, Lau SE (2017) Proteomics in commercial crops: an overview. J Proteomics 169:176–188

    Article  PubMed  Google Scholar 

  143. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382(3):669–678

    Article  PubMed  Google Scholar 

  144. Sriyam S et al (2007) Enhanced detectability in proteome studies. J Chromatogr B 849(1–2):91–104

    Article  Google Scholar 

  145. Rabilloud T (2013) When 2 D is not enough, go for an extra dimension. Proteomics 13(14):2065–2068

    Article  PubMed  Google Scholar 

  146. Quach TTT et al (2003) Development and applications of in-gel CNBr/tryptic digestion combined with mass spectrometry for the analysis of membrane proteins. J Proteome Res 2(5):543–552

    Article  PubMed  Google Scholar 

  147. El-Aneed A, Cohen A, Banoub J (2009) Mass spectrometry, review of the basics: electrospray, MALDI and commonly used mass analyzers. Appl Spectrosc Rev 44(3):210–230

    Article  Google Scholar 

  148. Shiio Y, Aebersold R (2006) Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat Protoc 1(1):139–145

    Article  PubMed  Google Scholar 

  149. Barkla BJ, Vera-Estrella R, Pantoja O (2013) Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 13(12–13):1801–1815

    Article  PubMed  Google Scholar 

  150. Evans C et al (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404(4):1011–1027

    Article  PubMed  Google Scholar 

  151. Su J et al (2019) Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Horticulture Res. https://doi.org/10.1038/s41438-019-0193-8

    Article  Google Scholar 

  152. Soufi B, Macek B (2014) Stable isotope labeling by amino acids applied to bacterial cell culture. Stable isotope labeling by amino acids in cell culture (SILAC). Springer, New York, pp 9–22

    Chapter  Google Scholar 

  153. Mastrobuoni G et al (2012) Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii. BMC Genomics 13(1):1–13

    Article  Google Scholar 

  154. Zhang X et al (2010) Multi-dimensional liquid chromatography in proteomics—a review. Anal Chim Acta 664(2):101–113

    Article  PubMed  PubMed Central  Google Scholar 

  155. Lee J et al (2011) Shotgun proteomic analysis for detecting differentially expressed proteins in the reduced culm number rice. Proteomics 11(3):455–468

    Article  PubMed  Google Scholar 

  156. Kushalappa AC, Gunnaiah R (2013) Metabolo-proteomics to discover plant biotic stress resistance genes. Trends Plant Sci 18(9):522–531

    Article  PubMed  Google Scholar 

  157. Vanderschuren H et al (2013) Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement. J Proteomics 93:5–19

    Article  PubMed  Google Scholar 

  158. Jorrín-Novo JV et al (2015) Fourteen years of plant proteomics reflected in proteomics: moving from model species and 2DE-based approaches to orphan species and gel-free platforms. Proteomics 15(5–6):1089–1112

    Article  PubMed  Google Scholar 

  159. Yocum AK, Chinnaiyan AM (2009) Current affairs in quantitative targeted proteomics: multiple reaction monitoring–mass spectrometry. Brief Funct Genomic Proteomic 8(2):145–157

    Article  PubMed  PubMed Central  Google Scholar 

  160. del Toro N et al (2014) PRIDE Proteomes: a condensed view of the plethora of public proteomics data available in the PRIDE repository. DILS 2014:21

    Google Scholar 

  161. Kusebauch U et al (2014) Using PeptideAtlas, SRMAtlas and PASSEL: comprehensive resources for discovery and targeted proteomics. Curr Protoc Bioinform. https://doi.org/10.1002/0471250953.bi1325s46

  162. Kosová K et al (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteomics 74(8):1301–1322

    Article  PubMed  Google Scholar 

  163. Senkler M, Braun H-P (2012) Functional annotation of 2D protein maps: the GelMap portal. Front Plant Sci 3:87

    Article  PubMed  PubMed Central  Google Scholar 

  164. Cham JA et al (2010) MRMaid-DB: a repository of published SRM transitions. J Proteome Res 9(1):620–625

    Article  PubMed  Google Scholar 

  165. Farrah T et al (2012) PASSEL: The peptide atlas SRM experiment library. Proteomics 12(8):1170–1175

    Article  PubMed  Google Scholar 

  166. Das A et al (2016) Leaf proteome analysis reveals prospective drought and heat stress response mechanisms in soybean. BioMed Res Int. https://doi.org/10.1155/2016/6021047

    Article  PubMed  PubMed Central  Google Scholar 

  167. Goche T et al (2020) Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Sci Rep 10(1):11835

    Article  PubMed  PubMed Central  Google Scholar 

  168. Luan H et al (2018) Elucidating the hypoxic stress response in barley (Hordeum vulgare L.) during waterlogging: a proteomics approach. Sci Rep 8(1):9655

    Article  PubMed  PubMed Central  Google Scholar 

  169. Shah P et al (2012) Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea. J Proteome Res 11(4):2178–2192

    Article  PubMed  PubMed Central  Google Scholar 

  170. Deery DM, Jones HG (2021) Field phenomics: will it enable crop improvement? Plant Phenomics. https://doi.org/10.34133/2021/9871989

    Article  PubMed  PubMed Central  Google Scholar 

  171. Lee SK et al (2011) Current statues of phenomics and its application for crop improvement: imaging systems for high-throughput screening. Korean J Breeding Sci 43(4):1–10

    Google Scholar 

  172. Singh A et al (2016) Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci 21(2):110–124

    Article  PubMed  Google Scholar 

  173. Rahaman M et al (2015) Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front Plant Sci 6:619

    Article  PubMed  PubMed Central  Google Scholar 

  174. Delaney JK et al (2016) Visible and infrared imaging spectroscopy of paintings and improved reflectography. Herit Sci 4(1):1–10

    Article  Google Scholar 

  175. Sarić R et al (2022) Applications of hyperspectral imaging in plant phenotyping. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2021.12.003

    Article  PubMed  Google Scholar 

  176. Deery DM et al (2016) Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. Front Plant Sci 7:1808

    Article  PubMed  PubMed Central  Google Scholar 

  177. Gerhards M et al (2016) Water stress detection in potato plants using leaf temperature, emissivity, and reflectance. Int J Appl Earth Obs Geoinf 53:27–39

    Google Scholar 

  178. Pérez-Bueno ML, Pineda M, Barón M (2019) Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Front Plant Sci 10:1135

    Article  PubMed  PubMed Central  Google Scholar 

  179. Pfeifer J et al (2015) Rapid phenotyping of crop root systems in undisturbed field soils using X-ray computed tomography. Plant Methods 11(1):1–8

    Article  Google Scholar 

  180. Furbank RT, Tester MJTIPS (2011) Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16(12):635–644

    Article  PubMed  Google Scholar 

  181. McGrail RK, Van Sanford DA, McNear DHJA Jr (2020) Trait-based root phenotyping as a necessary tool for crop selection and improvement. Agronomy 10(9):1328

    Article  Google Scholar 

  182. Großkinsky DK, Syaifullah SJ, Roitsch TJJOEB (2018) Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. J Exp Botany 69(4):825–844

    Article  Google Scholar 

  183. Bodner G et al (2017) RGB and spectral root imaging for plant phenotyping and physiological research: experimental setup and imaging protocols. J Vis Exp 126:e56251

    Google Scholar 

  184. Mahlein AKJPD (2016) Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis 100(2):241–251

    Article  PubMed  Google Scholar 

  185. Sirault XR, James RA, Furbank RTJFPB (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct Plant Biol 36(11):970–977

    Article  PubMed  Google Scholar 

  186. Schnurbusch T, Hayes J, Sutton TJBS (2010) Boron toxicity tolerance in wheat and barley: Australian perspectives. Breeding Sci 60(4):297–304

    Article  Google Scholar 

  187. Chaerle L et al (2009) Multi-sensor plant imaging: towards the development of a stress-catalogue. Biotechnol J Healthcare Nutr Technol 4(8):1152–1167

    Google Scholar 

  188. Jansen M et al (2009) Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol 36(11):902–914

    Article  PubMed  Google Scholar 

  189. Rungrat T et al (2016) Using phenomic analysis of photosynthetic function for abiotic stress response gene discovery. Am Soc Plant Biol 14:e0185

    Google Scholar 

  190. Qiu GY, Omasa K, Sase SJFPB (2009) An infrared-based coefficient to screen plant environmental stress: concept, test and applications. Funct Plant Biol 36(11):990–997

    Article  PubMed  Google Scholar 

  191. Wedeking R et al (2016) Osmotic adjustment of young sugar beets (Beta vulgaris) under progressive drought stress and subsequent rewatering assessed by metabolite analysis and infrared thermography. Funct Plant Biol 44(1):119–133

    Article  PubMed  Google Scholar 

  192. Zenda T et al (2021) Advances in cereal crop genomics for resilience under climate change. Life 11(6):502

    Article  PubMed  PubMed Central  Google Scholar 

  193. Henson J, Tischler G, Ning Z (2012) Next-generation sequencing and large genome assemblies. Pharmacogenomics 13(8):901–915

    Article  PubMed  Google Scholar 

  194. Paun O, Verhoeven KJ, Richards CLJNP (2019) Opportunities and limitations of reduced representation bisulfite sequencing in plant ecological epigenomics. New Phytol 221(2):738–742

    Article  PubMed  Google Scholar 

  195. Pandey G et al (2017) Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.). Plant Cell Rep 36:759–772

    Article  PubMed  Google Scholar 

  196. Tettelin H, Medini D (2020) The pangenome: diversity, dynamics and evolution of genomes. Springer, Cham

    Book  Google Scholar 

  197. Tettelin H et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.” Proc Natl Acad Sci 102(39):13950–13955

    Article  PubMed  PubMed Central  Google Scholar 

  198. Yuan Y et al (2018) Single-cell genomic analysis in plants. Genes (Basel) 9(1):50

    Article  PubMed  Google Scholar 

  199. Lee S et al (2011) Accurate quantification of transcriptome from RNA-Seq data by effective length normalization. Nucleic Acids Res 39(2):e9

    Article  PubMed  Google Scholar 

  200. Kaur H et al (2023) Single-cell transcriptomics is revolutionizing the improvement of plant biotechnology research: recent advances and future opportunities. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2023.2165900p.1-16

    Article  PubMed  Google Scholar 

  201. Zhang TQ et al (2021) Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat Commun 12(1):2053

    Article  PubMed  PubMed Central  Google Scholar 

  202. Liu Z et al (2020) Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing. Mol Plant 13(8):1178–1193

    Article  PubMed  Google Scholar 

  203. Kang M et al (2022) Single-cell RNA-sequencing of Nicotiana attenuata corolla cells reveals the biosynthetic pathway of a floral scent. New Phytol 234(2):527–544

    Article  PubMed  PubMed Central  Google Scholar 

  204. Tian C et al (2020) Single-nucleus RNA-seq resolves spatiotemporal developmental trajectories in the tomato shoot apex. bioRxiv. https://doi.org/10.1101/2020.09.20.305029

    Article  PubMed  PubMed Central  Google Scholar 

  205. Baslam M, Mitsui T (2020) Proteomic for quality: mining the proteome as a strategy to elucidate the protein complex applied for quality improvement. The future of rice demand: quality beyond productivity. Springer, Cham, pp 473–494

    Chapter  Google Scholar 

  206. Husaini AM et al (2018) Multiplex fluorescent, activity-based protein profiling identifies active α-glycosidases and other hydrolases in plants. Plant Physiol 177(1):24–37

    Article  PubMed  PubMed Central  Google Scholar 

  207. Husaini AM et al (2022) The menace of saffron adulteration: Low-cost rapid identification of fake look-alike saffron using Foldscope and machine learning technology. Front Plant Sci. https://doi.org/10.3389/fpls.2022.945291

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the SKUAST-K authorities especially Hon’ble VC Prof. Nazir A. Ganai, for promoting plant biotechnology and encouraging critical thinking among students.

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AMH conceptualized, analysed and edited the manuscript. SAH and TB wrote the paper with critical inputs from THR and AMH. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Amjad M. Husaini.

Ethics declarations

Competing interests

The authors have no conflict of interest and nothing to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, S.A.U., Bashir, T., Roberts, T.H. et al. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches. Mol Biol Rep 51, 41 (2024). https://doi.org/10.1007/s11033-023-09042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09042-8

Keywords

Navigation