Skip to main content

Advertisement

Log in

Susceptibility loci identified in Han Chinese influence genetic predisposition of PCOS in Indian women

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Polycystic ovary syndrome (PCOS) is a multifactorial disorder characterized by a broad spectrum of reproductive and metabolic perturbations, necessitating early timely diagnosis and management. PCOS is a multigenic disorder and ample evidence from family based, candidate gene and genome-wide association studies (GWAS) has implicated genetic factors in development and progression of PCOS. The first GWASs in Han Chinese population revealed prominent gene loci to be strong contenders in the etiopathogenesis of PCOS. However, different ethnic and geographical settings impact the genetic association pattern of PCOS.

Methods and results

In the current case-control replication study, we have genotyped previously identified polymorphisms viz. rs2479106 and rs10818854 of DENND1A and rs13405728 of LHCGR, rs4385527 and rs3802457 of c9orf3, rs705702 of RAB5B and rs1894116 of YAP1 in control (N = 247) and PCOS (N = 504) women by Sanger sequencing, and their association with PCOS susceptibility and its related traits was investigated. We found significant association of rs4385527 of c9orf3 and rs1894116 of YAP1 with decreased and increased PCOS susceptibility respectively in non-hyperandrogenic women. Trend towards association was also noted for rs2479106 of DENND1A and rs705702 of RAB5B. Additionally, polymorphisms also showed association with metabolic and androgen related traits in both controls and hyper- and non-hyperandrogenic women with PCOS.

Conclusions

Thus, this study shows that some, but not all polymorphisms previously identified in Han Chinese women, could contribute to the genetic pathophysiology of PCOS in Indian women, accentuating essentiality of conducting replication studies to elucidate the genetic predisposition profile of PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data is included in the manuscript.

Code availability

Not applicable.

References

  1. Sagvekar P, Dadachanji R, Patil K, Mukherjee S (2018) Pathomechanisms of polycystic ovary syndrome: multidimensional approaches. Front Bioscience 10:384–422. https://doi.org/10.2741/e829

    Article  Google Scholar 

  2. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7:219–231. https://doi.org/10.1038/nrendo.2010.217

    Article  CAS  PubMed  Google Scholar 

  3. Chen Z-J, Zhao H, He L et al (2011) Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet 43:55–59. https://doi.org/10.1038/ng.732

    Article  CAS  PubMed  Google Scholar 

  4. Shi Y, Zhao H, Shi Y et al (2012) Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet 44:1020–1025. https://doi.org/10.1038/ng.2384

    Article  CAS  PubMed  Google Scholar 

  5. Dadachanji R, Sawant D, Patil A, Mukherjee S (2021) Replication study of THADA rs13429458 variant with PCOS susceptibility and its related traits in Indian women. Gynecol Endocrinol 37:716–720. https://doi.org/10.1080/09513590.2021.1906854

    Article  CAS  PubMed  Google Scholar 

  6. Tian Y, Li J, Su S et al (2020) PCOS-GWAS susceptibility variants in THADA, INSR, TOX3, and DENND1A are Associated with metabolic syndrome or insulin resistance in women with PCOS. Front Endocrinol. https://doi.org/10.3389/fendo.2020.00274

    Article  Google Scholar 

  7. Xu Y, Li Z, Ai F et al (2015) Systematic evaluation of genetic variants for polycystic ovary syndrome in a Chinese population. PLoS One. https://doi.org/10.1371/journal.pone.0140695

    Article  PubMed  PubMed Central  Google Scholar 

  8. Louwers YV, Stolk L, Uitterlinden AG, Laven JSE (2013) Cross-ethnic meta-analysis of genetic variants for polycystic ovary syndrome. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2013-2495

    Article  PubMed  Google Scholar 

  9. Saxena R, Georgopoulos NA, Braaten TJ et al (2015) Han Chinese polycystic ovary syndrome risk variants in women of European ancestry: relationship to FSH levels and glucose tolerance. Human Reprod. 30:1454–1459. https://doi.org/10.1093/humrep/dev085

    Article  CAS  Google Scholar 

  10. Goodarzi MO, Jones MR, Li X et al (2012) Replication of association of DENND1A and THADA variants with polycystic ovary syndrome in European cohorts. J Med Genet 49:90–95. https://doi.org/10.1136/jmedgenet-2011-100427.Replication

    Article  CAS  PubMed  Google Scholar 

  11. Brower MA, Jones MR, Rotter JI et al (2015) Further investigation in europeans of susceptibility variants for polycystic ovary syndrome discovered in genome-wide association studies of Chinese individuals. J Clin Endocrinol Metab 100:E182–E186. https://doi.org/10.1210/jc.2014-2689

    Article  CAS  PubMed  Google Scholar 

  12. Zhao S, Tian Y, Gao X et al (2015) Family-based analysis of eight susceptibility loci in polycystic ovary syndrome. Nat Publ Group. https://doi.org/10.1038/srep12619

    Article  Google Scholar 

  13. Zhao H, Xu X, Xing X et al (2012) Family-based analysis of susceptibility loci for polycystic ovary syndrome on chromosome. Human Reprod 27:294–298. https://doi.org/10.1093/humrep/der379

    Article  CAS  Google Scholar 

  14. Vishnubotla DS, Shek AP, Madireddi S (2020) Pooled genetic analysis identifies variants that confer enhanced susceptibility to PCOS in Indian ethnicity. Gene 752:144760. https://doi.org/10.1016/j.gene.2020.144760

    Article  CAS  PubMed  Google Scholar 

  15. Fauser BCJM, Tarlatzis BC, Rebar RW et al (2012) Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril 97:28–38. https://doi.org/10.1016/j.fertnstert.2011.09.024

    Article  PubMed  Google Scholar 

  16. Mukherjee S, Shaikh N, Khavale S et al (2009) Genetic variation in exon 17 of INSR is associated with insulin resistance and hyperandrogenemia among lean Indian women with polycystic ovary syndrome. Eur J Endocrinol 160:855–862. https://doi.org/10.1530/EJE-08-0932

    Article  CAS  PubMed  Google Scholar 

  17. Mcallister JM, Legro RS, Modi BP, Iii JFS (2015) Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol Metab 26:118–124. https://doi.org/10.1016/j.tem.2014.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hayes MG, Urbanek M, Ehrmann DA et al (2015) Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat Commun 6:7502. https://doi.org/10.1038/ncomms8502

    Article  CAS  PubMed  Google Scholar 

  19. Day FR, Hinds DA, Tung JY et al (2015) Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat Commun 6:8464. https://doi.org/10.1038/ncomms9464

    Article  CAS  PubMed  Google Scholar 

  20. Lee H, Oh J, Sung Y et al (2015) Genome-wide association study identified new susceptibility loci for polycystic ovary syndrome. Hum Reprod 30:723–731. https://doi.org/10.1093/humrep/deu352

    Article  CAS  PubMed  Google Scholar 

  21. Hartanti MD, Rosario R, Hummitzsch K et al (2020) Could perturbed fetal development of the ovary contribute to the development of polycystic ovary syndrome in later life? PLoS ONE 15:e0229351. https://doi.org/10.1371/journal.pone.0229351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eriksen MB, Brusgaard K, Andersen M et al (2012) Association of polycystic ovary syndrome susceptibility single nucleotide polymorphism rs2479106 and PCOS in caucasian patients with PCOS or hirsutism as referral diagnosis. Eur J Obstet Gynecol Reprod Biol 163:39–42. https://doi.org/10.1016/j.ejogrb.2012.03.020

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Y-N, Zhang Y-T, Liu Q et al (2020) Association analysis between the tag single nucleotide polymorphisms of DENND1A and the risk of polycystic ovary syndrome in Chinese Han women. BMC Med Genet 21:14. https://doi.org/10.1186/s12881-019-0945-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wan P, Meng L, Huang C et al (2021) Replication study and meta-analysis of selected genetic variants and polycystic ovary syndrome susceptibility in Asian population. J Assist Reprod Genet 38:2781–2789. https://doi.org/10.1007/s10815-021-02291-1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ramanathan B, Murugan J, Velayutham K (2021) Pilot study on evaluation and determination of the prevalence of polycystic ovarian syndrome (PCOS) associated gene markers in the South Indian population. Indian J Endocrinol Metab 25:551–558. https://doi.org/10.4103/ijem.ijem_340_21

    Article  PubMed  Google Scholar 

  26. Dallel M, Sarray S, Douma Z et al (2018) Differential association of DENND1A genetic variants with polycystic ovary syndrome in Tunisian but not Bahraini arab women. Gene 647:79–84. https://doi.org/10.1016/j.gene.2018.01.028

    Article  CAS  PubMed  Google Scholar 

  27. Ha L, Shi Y, Zhao J et al (2015) Association study between polycystic ovarian syndrome and the susceptibility genes polymorphisms in Hui Chinese women. PLoS ONE 10:e0126505. https://doi.org/10.1371/journal.pone.0126505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gammoh E, Arekat MR, Saldhana FL et al (2015) DENND1A gene variants in Bahraini arab women with polycystic ovary syndrome. Gene 560:30–33. https://doi.org/10.1016/j.gene.2015.01.034

    Article  CAS  PubMed  Google Scholar 

  29. Hong S-H, Hong YS, Jeong K et al (2020) Relationship between the characteristic traits of polycystic ovary syndrome and susceptibility genes. Sci Rep 10:10479. https://doi.org/10.1038/s41598-020-66633-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Welt CK, Styrkarsdottir U, Ehrmann DA et al (2012) Variants in DENND1A are associated with polycystic ovary syndrome in women of European ancestry. J Clin Endocrinol Metab 97:E1342–E1347. https://doi.org/10.1210/jc.2011-3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bao S, Cai JH, Yang SY et al (2016) Association of DENND1A gene polymorphisms with polycystic ovary syndrome: a Meta-analysis. J Clin Res Pediatr Endocrinol 8:135–143. https://doi.org/10.4274/jcrpe.2259

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gao J, Xue J-D, Li Z-C et al (2016) The association of DENND1A gene polymorphisms and polycystic ovary syndrome risk: a systematic review and meta-analysis. Arch Gynecol Obstet 294:1073–1080. https://doi.org/10.1007/s00404-016-4159-x

    Article  CAS  PubMed  Google Scholar 

  33. Larsen CB, Kudela E, Biringer K (2022) Association of FSHR and DENND1A polymorphisms with polycystic ovary syndrome: a meta-analysis. JBRA Assist Reprod. https://doi.org/10.5935/1518-0557.20220043

    Article  Google Scholar 

  34. Sun M, Sheng Y, Ma Z et al (2014) Correlation analysis between polycystic ovary syndrome susceptibility genes and metabolic phenotypes. Zhonghua Fu Chan Ke Za Zhi 49:441–445

    PubMed  Google Scholar 

  35. Cui L, Zhao H, Zhang B et al (2013) Genotype – phenotype correlations of PCOS susceptibility SNPs identified by GWAS in a large cohort of Han Chinese women. Hum Reprod 28:538–544. https://doi.org/10.1093/humrep/des424

    Article  CAS  PubMed  Google Scholar 

  36. Lerchbaum E, Trummer O, Giuliani A et al (2011) Susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21, and 9q33.3 in a cohort of caucasian women. Horm Metab Res 43:743–747. https://doi.org/10.1055/s-0031-1286279

    Article  CAS  PubMed  Google Scholar 

  37. Xia J-Y, Tian W, Yin G-H, Yan H (2019) Association of Rs13405728, Rs12478601, and Rs2479106 single nucleotide polymorphisms and in vitro fertilization and embryo transfer efficacy in patients with polycystic ovarian syndrome: a case control genome-wide association study. Kaohsiung J Med Sci 35:49–55. https://doi.org/10.1002/kjm2.12008

    Article  CAS  PubMed  Google Scholar 

  38. Li J, Cui L, Jiang X et al (2020) Transmission of polycystic ovary syndrome susceptibility single-nucleotide polymorphisms and their association with phenotype changes in offspring. Hum Reprod 35:1711–1718. https://doi.org/10.1093/humrep/deaa125

    Article  CAS  PubMed  Google Scholar 

  39. Mutharasan P, Galdones E, Pen B et al (2013) Evidence for chromosome 2p16.3 polycystic ovary syndrome susceptibility locus in affected women of European ancestry. J Clin Endocrinol Metab 98:185–190. https://doi.org/10.1210/jc.2012

    Article  Google Scholar 

  40. Almawi WY, Hubail B, Arekat DZ et al (2015) Leutinizing hormone/choriogonadotropin receptor and follicle stimulating hormone receptor gene variants in polycystic ovary syndrome. J Assist Reprod Genet 32:607–614. https://doi.org/10.1007/s10815-015-0427-0

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zou J, Wu D, Liu Y, Tan S (2019) Association of luteinizing hormone/choriogonadotropin receptor gene polymorphisms with polycystic ovary syndrome risk: a meta-analysis. Gynecol Endocrinol 35:81–85. https://doi.org/10.1080/09513590.2018.1498834

    Article  CAS  PubMed  Google Scholar 

  42. Arefi S, Mottaghi S, Sharifi AM (2013) Studying the correlation of renin-angiotensin-system (RAS) components and insulin resistance in polycystic ovary syndrome (PCOs). Gynecol Endocrinol 29:470–473. https://doi.org/10.3109/09513590.2013.769513

    Article  CAS  PubMed  Google Scholar 

  43. Cui L, Li G, Zhong W et al (2015) Polycystic ovary syndrome susceptibility single nucleotide polymorphisms in women with a single PCOS clinical feature. PubMed Commons 30:5–6. https://doi.org/10.1093/humrep/deu361

    Article  CAS  Google Scholar 

  44. Bakhashab S, Ahmed N (2019) Genotype based risk predictors for polycystic ovary syndrome in Western Saudi Arabia. Bioinformation 15:812–819. https://doi.org/10.6026/97320630015812

    Article  PubMed  PubMed Central  Google Scholar 

  45. Alan Harris R, Archer KJ, Goodarzi MO et al (2023) Loci on chromosome 12q13.2 encompassing ERBB3, PA2G4 and RAB5B are associated with polycystic ovary syndrome. Gene 852:147062. https://doi.org/10.1016/j.gene.2022.147062

    Article  CAS  PubMed  Google Scholar 

  46. Yu J, Ding C, Guan S, Wang C (2019) Association of single nucleotide polymorphisms in the RAB5B gene 3’UTR region with polycystic ovary syndrome in Chinese Han women. Biosci Rep. https://doi.org/10.1042/BSR20190292

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kulkarni R, Teves ME, Han AX et al (2019) Colocalization of polycystic ovary syndrome candidate gene products in Theca cells suggests novel signaling pathways. J Endocr Soc 3:2204–2223. https://doi.org/10.1210/js.2019-00169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maas K, Mirabal S, Penzias A et al (2018) Hippo signaling in the ovary and polycystic ovarian syndrome. J Assist Reprod Genet 35:1763–1771. https://doi.org/10.1007/s10815-018-1235-0

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li T, Zhao H, Zhao X et al (2012) Identification of YAP1 as a novel susceptibility gene for polycystic ovary syndrome. J Med Genet 49:254–257. https://doi.org/10.1136/jmedgenet-2011-100727

    Article  CAS  PubMed  Google Scholar 

  50. Lidaka L, Bekere L, Lazdane G et al (2022) Role of single nucleotide variants in the YAP1 gene in adolescents with polycystic ovary syndrome. Biomedicines. https://doi.org/10.3390/biomedicines10071688. (Biomedicines 10)

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang Y, Ho K, Keaton JM et al (2020) A genome-wide association study of polycystic ovary syndrome identified from electronic health records. Am J Obstet Gynecol 223:559–561. https://doi.org/10.1016/j.ajog.2020.04.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to all the study participants and the staff of the multidisciplinary PCOS clinic at ICMR-NIRRCH. This work is partially supported by Department of Science and Technology (CRG/2019/001457), National Institute for Research in Reproductive and Child Health (RA/1500/02-2023) and Indian Council of Medical Research (ICMR), New Delhi, India. The authors are deeply appreciative for all the technical support received from Ms. Gayatri Shinde, Ms Dhanashree Gaikwad and Ms. Mahalakshmi Bhat.

Funding

This work is partially supported by Department of Science and Technology (CRG/2019/001457), NIRRCH (NIRRCH/RA/1500/02-2023) and Indian Council of Medical Research (ICMR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

RD, SK and NJ performed all investigations and experiments and curated data, RD performed formal analysis and interpretation and wrote the manuscript, AP was responsible for recruitment and characterization of study participants, SM was responsible for conceptualization, study design, funding acquisition, project administration, providing critical revisions and approving the final manuscript.

Corresponding author

Correspondence to Srabani Mukherjee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study was approved by the human ethics committee of ICMR-National Institute for Research in Reproductive and Child Health (295/2016).

Consent to participate

All subjects gave written informed consent prior to participation in the study.

Consent to publish

All authors consent to the publication of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadachanji, R., Khavale, S., Joshi, N. et al. Susceptibility loci identified in Han Chinese influence genetic predisposition of PCOS in Indian women. Mol Biol Rep 51, 160 (2024). https://doi.org/10.1007/s11033-023-09004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09004-0

Keywords

Navigation