Skip to main content

Advertisement

Log in

Current advancements in B-cell receptor sequencing fast-track the development of synthetic antibodies

  • Mini Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Synthetic antibodies (Abs) are a class of engineered proteins designed to mimic the functions of natural Abs. These are produced entirely in vitro, eliminating the need for an immune response. As such, synthetic Abs have transformed the traditional methods of raising Abs. Likewise, deep sequencing technologies have revolutionized genomics and molecular biology. These enable the rapid and cost-effective sequencing of DNA and RNA molecules. They have allowed for accurate and inexpensive analysis of entire genomes and transcriptomes. Notably, via deep sequencing it is now possible to sequence a person’s entire B-cell receptor immune repertoire, termed BCR sequencing. This procedure allows for big data explorations of natural Abs associated with an immune response. Importantly, the identified sequences have the ability to improve the design and engineering of synthetic Abs by offering an initial sequence framework for downstream optimizations. Additionally, machine learning algorithms can be introduced to leverage the vast amount of BCR sequencing datasets to rapidly identify patterns hidden in big data to effectively make in silico predictions of antigen selective synthetic Abs. Thus, the convergence of BCR sequencing, machine learning, and synthetic Ab development has effectively promoted a new era in Ab therapeutics. The combination of these technologies is driving rapid advances in precision medicine, diagnostics, and personalized treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

Abs:

Antibodies

mAbs:

Monoclonal Abs

NGS:

Next-generation sequencing

BCRs:

B-cell receptors

Ig:

Immunoglobulins

CDRs:

Complementary determining regions

V:

Variable

J:

Joining

References

  1. Bradbury ARM, Sidhu SS, Dübel S et al (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29:245–254. https://doi.org/10.1038/nbt.1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adams JJ, Sidhu SS (2014) Synthetic antibody technologies. Curr Opin Struct Biol 24:1–9. https://doi.org/10.1016/j.sbi.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  3. Chen G, Sidhu SS (2014) Design and generation of synthetic antibody libraries for phage display. Methods Mol Biol 1131:113–131. https://doi.org/10.1007/978-1-62703-992-5_8

    Article  CAS  PubMed  Google Scholar 

  4. Chen G, Gorelik L, Simon KJ et al (2015) Synthetic antibodies and peptides recognizing progressive multifocal leukoencephalopathyspecific point mutations in polyomavirus JC capsid viral protein 1. MAbs 7:681–692. https://doi.org/10.1080/19420862.2015.1038447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miersch S, Sidhu SS (2012) Synthetic antibodies: concepts, potential and practical considerations. Methods 57:486–498. https://doi.org/10.1016/j.ymeth.2012.06.012

    Article  CAS  PubMed  Google Scholar 

  6. Marks JD, Hoogenboom HR, Bonnert TP et al (1991) By-passing immunization. J Mol Biol 222:581–597. https://doi.org/10.1016/0022-2836(91)90498-U

    Article  CAS  PubMed  Google Scholar 

  7. Sidhu SS, Fellouse FA (2006) Synthetic therapeutic antibodies. Nat Chem Biol 2:682–688. https://doi.org/10.1038/nchembio843

    Article  CAS  PubMed  Google Scholar 

  8. Fuh G (2007) Synthetic antibodies as therapeutics. Expert Opin Biol Ther 7:73–87. https://doi.org/10.1517/14712598.7.1.73

    Article  CAS  PubMed  Google Scholar 

  9. Kimball JW (2011) Monoclonal Antibodies. Online text B 1131:447–476. https://doi.org/10.1385/1-59259-049-7:233

  10. Zola H (2013) Monoclonal antibodies. CRC Press, Boca Raton

    Book  Google Scholar 

  11. Kipriyanov SM (2009) Antibody phage display. Antib Phage Disp 562:177–193. https://doi.org/10.1007/978-1-60327-302-2

    Article  CAS  Google Scholar 

  12. Hanes J, Jermutus L, Weber-Bornhauser S et al (1998) Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci 95:14130–14135. https://doi.org/10.1073/pnas.95.24.14130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sergeeva A, Kolonin MG, Molldrem JJ et al (2006) Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 58:1622–1654. https://doi.org/10.1016/j.addr.2006.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557. https://doi.org/10.1038/nbt0697-553

    Article  CAS  PubMed  Google Scholar 

  15. Deantonio C, Cotella D, Macor P, et al (2014) Human Monoclonal Antibodies. 1060:277–295. https://doi.org/10.1007/978-1-62703-586-6

  16. Fellouse FA, Esaki K, Birtalan S et al (2007) High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol 373:924–940. https://doi.org/10.1016/j.jmb.2007.08.005

    Article  CAS  PubMed  Google Scholar 

  17. Pande J, Szewczyk MM, Grover AK (2010) Phage display: concept, innovations, applications and future. Biotechnol Adv 28:849–858. https://doi.org/10.1016/j.biotechadv.2010.07.004

    Article  CAS  PubMed  Google Scholar 

  18. Zahavi D, Weiner L (2020) Monoclonal antibodies in cancer therapy. Antibodies 9(349):34. https://doi.org/10.3390/ANTIB9030034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alfaleh MA, Alsaab HO, Mahmoud AB et al (2020) Phage display derived monoclonal antibodies: from bench to bedside. Front Immunol 11:567223. https://doi.org/10.3389/FIMMU.2020.01986/BIBTEX

    Article  Google Scholar 

  20. Metzker ML (2009) Sequencing technologies — the next generation. Nat Rev Genet 2010 111 11:31–46. https://doi.org/10.1038/nrg2626

  21. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: 10 years of next-generation sequencing technologies. Nat Rev Genet 176(17):333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  Google Scholar 

  22. Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38:95–109. https://doi.org/10.1016/J.JGG.2011.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem 6:287–303. https://doi.org/10.1146/annurev-anchem-062012-092628

    Article  CAS  Google Scholar 

  24. Shendure J, Aiden EL (2012) The expanding scope of DNA sequencing. Nat Biotechnol 3011(30):1084–1094. https://doi.org/10.1038/nbt.2421

    Article  CAS  Google Scholar 

  25. Meng W, Zhang B, Schwartz GW et al (2017) An atlas of B-cell clonal distribution in the human body. Nat Biotechnol 359(35):879–884. https://doi.org/10.1038/nbt.3942

    Article  CAS  Google Scholar 

  26. Georgiou G, Ippolito GC, Beausang J et al (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 322(32):158–168. https://doi.org/10.1038/nbt.2782

    Article  CAS  Google Scholar 

  27. Robins H (2013) Immunosequencing: applications of immune repertoire deep sequencing. Curr Opin Immunol 25:646–652. https://doi.org/10.1016/J.COI.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  28. Friedensohn S, Neumeier D, Khan TA et al (2020) Convergent selection in antibody repertoires is revealed by deep learning. bioRxiv. https://doi.org/10.1101/2020.02.25.965673

    Article  Google Scholar 

  29. Lim YW, Adler AS, Johnson DS (2022) Predicting antibody binders and generating synthetic antibodies using deep learning. MAbs. https://doi.org/10.1080/19420862.2022.2069075

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/NATURE14539

    Article  CAS  PubMed  Google Scholar 

  31. Sebastiani M, Vacchi C, Manfredi A, Cassone G (2022) Personalized medicine and machine learning: a roadmap for the future. J Clin Med. https://doi.org/10.3390/JCM11144110

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z (2022) Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Brief Bioinform. https://doi.org/10.1093/BIB/BBAC191

    Article  PubMed  PubMed Central  Google Scholar 

  33. Alt FW, Blackwell TK, Yancopoulos GD (1987) Development of the primary antibody repertoire. Science (80− ) 238:1079–1087. https://doi.org/10.1126/science.3317825

    Article  CAS  Google Scholar 

  34. Rajewsky K (1996) Clonal selection and learning in the antibody system. Nature 381:751–758. https://doi.org/10.1038/381751a0

    Article  CAS  PubMed  Google Scholar 

  35. Yaari G, Kleinstein SH (2015) (2015) Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Med 71(7):1–14. https://doi.org/10.1186/S13073-015-0243-2

    Article  Google Scholar 

  36. Calis JJA, Rosenberg BR (2014) Characterizing immune repertoires by high throughput sequencing: strategies and applications. Trends Immunol 35:581–590. https://doi.org/10.1016/J.IT.2014.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang N, He J, Weinstein JA et al (2013) Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci Transl Med 5:171ra19. https://doi.org/10.1126/scitranslmed.3004794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lavinder JJ, Wine Y, Giesecke C et al (2014) Identification and characterization of the constituent human serum antibodies elicited by vaccination. Proc Natl Acad Sci USA 111:2259–2264. https://doi.org/10.1073/pnas.1317793111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laserson U, Vigneault F, Gadala-Maria D et al (2014) High-resolution antibody dynamics of vaccine-induced immune responses. Proc Natl Acad Sci USA 111:4928–4933. https://doi.org/10.1073/pnas.1323862111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roskin KM, Simchoni N, Liu Y et al (2015) IgH sequences in common variable immune deficiency reveal altered B cell development and selection. Sci Transl Med 7:302ra135. https://doi.org/10.1126/scitranslmed.aab1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Palanichamy A, Apeltsin L, Kuo TC et al (2014) Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med 6:248ra106. https://doi.org/10.1126/scitranslmed.3008930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Robinson WH (2014) Sequencing the functional antibody repertoire—diagnostic and therapeutic discovery. Nat Rev Rheumatol 113(11):171–182. https://doi.org/10.1038/nrrheum.2014.220

    Article  CAS  Google Scholar 

  43. Lee YN, Frugoni F, Dobbs K et al (2016) Characterization of T and B cell repertoire diversity in patients with RAG deficiency. Sci Immunol. https://doi.org/10.1126/sciimmunol.aah6109

    Article  PubMed  PubMed Central  Google Scholar 

  44. Friedensohn S, Khan TA, Reddy ST (2017) Advanced methodologies in high-throughput sequencing of immune repertoires. Trends Biotechnol 35:203–214. https://doi.org/10.1016/j.tibtech.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  45. Reddy ST, Ge X, Miklos AE et al (2010) Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat Biotechnol 28:965–969

    Article  CAS  PubMed  Google Scholar 

  46. Zhu J, Ofek G, Yang Y et al (2013) Mining the antibodyome for HIV-1-neutralizing antibodies with next-generation sequencing and phylogenetic pairing of heavy/light chains. Proc Natl Acad Sci USA 110:6470–6475. https://doi.org/10.1073/PNAS.1219320110/SUPPL_FILE/PNAS.201219320SI.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Doria-Rose NA, Schramm CA, Gorman J et al (2014) Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nat 5097498(509):55–62. https://doi.org/10.1038/nature13036

    Article  CAS  Google Scholar 

  48. Williams LD, Ofek G, Schätzle S et al (2017) Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Sci Immunol. https://doi.org/10.1126/sciimmunol.aal2200

    Article  PubMed  PubMed Central  Google Scholar 

  49. Montague Z, Lv H, Otwinowski J et al (2021) Dynamics of B cell repertoires and emergence of cross-reactive responses in patients with different severities of COVID-19. Cell Rep 35:109173. https://doi.org/10.1016/J.CELREP.2021.109173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Il KS, Noh J, Kim S et al (2021) Stereotypic neutralizing VHantibodies against SARS-CoV-2 spike protein receptor binding domain in patients with COVID-19 and healthy individuals. Sci Transl Med 13:27. https://doi.org/10.1126/SCITRANSLMED.ABD6990/SUPPL_FILE/PAPV3.PDF

    Article  Google Scholar 

  51. Bashford-Rogers RJM, Bergamaschi L, McKinney EF et al (2019) B cell receptor repertoire analysis in six immune-mediated diseases. Nature 574:122. https://doi.org/10.1038/S41586-019-1595-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Papalexi E, Satija R (2017) Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 181(18):35–45. https://doi.org/10.1038/nri.2017.76

    Article  CAS  Google Scholar 

  53. Asensio MA, Lim YW, Wayham N et al (2019) Antibody repertoire analysis of mouse immunization protocols using microfluidics and molecular genomics. MAbs 11:870. https://doi.org/10.1080/19420862.2019.1583995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shlesinger D, Hong KL, Shammas G et al (2022) Single-cell immune repertoire sequencing of B and T cells in murine models of infection and autoimmunity. Genes Immun 236(23):183–195. https://doi.org/10.1038/s41435-022-00180-w

    Article  CAS  Google Scholar 

  55. Csepregi L, Ehling RA, Wagner B, Reddy ST (2020) Immune literacy: reading, writing, and editing adaptive immunity. iScience. https://doi.org/10.1016/J.ISCI.2020.101519

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chen H, Ye F, Guo G (2019) Revolutionizing immunology with single-cell RNA sequencing. Cell Mol Immunol 163(16):242–249. https://doi.org/10.1038/s41423-019-0214-4

    Article  CAS  Google Scholar 

  57. García-Valiente R, Merino Tejero E, Stratigopoulou M et al (2023) Understanding repertoire sequencing data through a multiscale computational model of the germinal center. npj Syst Biol Appl. https://doi.org/10.1038/s41540-023-00271-y

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ostrovsky-Berman M, Frankel B, Polak P, Yaari G (2021) Immune2vec: embedding B/T cell receptor sequences in ℝ N using natural language processing. Front Immunol 12:6080687. https://doi.org/10.3389/fimmu.2021.680687

    Article  CAS  Google Scholar 

  59. Kim I, Byun SY, Kim S et al (2021) Computational analysis of B cell receptor repertoires in COVID-19 patients using deep embedded representations of protein sequences. bioRxiv. https://doi.org/10.1101/2021.08.02.454701

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shiroguchi K, Jia TZ, Sims PA, Xie XS (2012) Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes. Proc Natl Acad Sci USA 109:1347–1352. https://doi.org/10.1073/PNAS.1118018109/SUPPL_FILE/SD07.XLS

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Turchaninova MA, Davydov A, Britanova OV et al (2016) High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat Protoc 119(11):1599–1616. https://doi.org/10.1038/nprot.2016.093

    Article  CAS  Google Scholar 

  62. Khan TA, Friedensohn S, Gorter de Vries AR et al (2016) Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting. Sci Adv 2:e1501371. https://doi.org/10.1126/sciadv.1501371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shugay M, Britanova OV, Merzlyak EM et al (2014) Towards error-free profiling of immune repertoires. Nat Methods 116(11):653–655. https://doi.org/10.1038/nmeth.2960

    Article  CAS  Google Scholar 

  64. Dekosky BJ, Ippolito GC, Deschner RP et al (2013) High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat Biotechnol 312(31):166–169. https://doi.org/10.1038/nbt.2492

    Article  CAS  Google Scholar 

  65. Goldstein LD, Chen YJJ, Wu J et al (2019) Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Commun Biol 21(2):1–10. https://doi.org/10.1038/s42003-019-0551-y

    Article  Google Scholar 

  66. Friedensohn S, Lindner JM, Cornacchione V et al (2018) Synthetic standards combined with error and bias correction improve the accuracy and quantitative resolution of antibody repertoire sequencing in human naïve and memory B cells. Front Immunol 9:375992. https://doi.org/10.3389/FIMMU.2018.01401/BIBTEX

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Peter Olson and Janet Stewart for reviewing of this article and providing detailed suggestions.

Funding

This work was partially supported by RevivAb Educational Advancement Grant MT-021.

Author information

Authors and Affiliations

Authors

Contributions

EG made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; EG drafted the work or revised it critically for important intellectual content; EG approved the version to be published; and EG agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Eugenio Gallo.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo, E. Current advancements in B-cell receptor sequencing fast-track the development of synthetic antibodies. Mol Biol Rep 51, 134 (2024). https://doi.org/10.1007/s11033-023-08941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-08941-0

Keywords

Navigation