Skip to main content

Advertisement

Log in

The emerging role of microRNA-22 in the Leukemia: experimental and clinical implications

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are short noncoding RNAs, approximately 20–24 nucleotides long that negatively regulate gene expression by either inhibiting translation or cleaving complementary mRNA to participate in various biological processes. Accumulating evidence has indicated that miRNAs are widely present in hematological cancers, particularly leukemia, exhibiting either upregulation or downregulation in leukemia patients compared with healthy controls. These miRNAs have a pivotal role in the development, progression and metastasis of leukemia, as well as in the prognosis and/or relapse of patients. miR-22 is one of the abnormally expressed miRNAs in a variety of leukemia diseases, and is considered to be one of the few cancer suppressors. Recent research has demonstrated that miR-22 is involved in the regulation of leukemia cell proliferation, differentiation and apoptosis, and could be a promising biomarker and prognostic indicator for leukemia. Here, we summarize all relevant findings that carry out experimental investigation and clinical analyses, aiming to elucidate the comprehensive implications of miR-22 in various types of leukemia for the development of new therapeutic and prognostic strategies and new drug targets for the treatment of leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AML:

Acute myeloid leukemia

ALL:

Acute lymphoblastic leukemia

CML:

Chronic myelocytic leukemia

CLL:

Chronic lymphocytic leukemia

pPCL:

Primary plasma cell leukemia

MDS:

Myelodysplastic syndrome

miRNAs:

microRNAs

qRT-PCR:

Quantitative real time PCR

TET1:

Ten-eleven translocation methylcytosine dioxygenase 1

qRT-PCR:

Quantitative real-time PCR

PBMC:

Peripheral blood mononuclear cell

NET1:

Neuro-epithelial transforming gene 1

ATRA:

All-trans retinoic acid

TPA:

O-tetradecanoylphorbol-13-acetate

VitD3:

1,25-Dihydroxyvitamin D3

OS:

Overall survival

PFS:

Progression-free survival

CR:

Complete remission

References

  1. Della Starza I, Chiaretti S, De Propris MS, Elia L, Cavalli M, De Novi LA, Soscia R, Messina M, Vitale A, Guarini A, Foà R (2019) Minimal residual Disease in Acute Lymphoblastic Leukemia: technical and clinical advances. Front Oncol 9:726

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yokota T, Kanakura Y (2016) Genetic abnormalities associated with acute lymphoblastic Leukemia. Cancer Sci 107(6):721–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guijarro F, Garrote M, Villamor N, Colomer D, Esteve J, López-Guerra M (2023) Novel tools for diagnosis and monitoring of AML. Curr Oncol (Toronto Ont) 30(6):5201–5213

    Article  Google Scholar 

  4. Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M (2022) Genetic biomarkers and their clinical implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci. ;23(5)

  5. Derwich K, Brzezinski A, Karpenko C, Morar V, Atukoralalage U (2022) Acute lymphoblastic Leukemia in adolescents and young adults: a Polish perspective. J Adolesc Young Adult Oncol 11(1):1–5

    Article  PubMed  Google Scholar 

  6. Roskoski R (2022) Jr. Targeting BCR-Abl in the treatment of Philadelphia-chromosome positive chronic myelogenous Leukemia. Pharmacol Res 178:106156

    Article  CAS  PubMed  Google Scholar 

  7. Dighiero G, Hamblin TJ (2008) Chronic lymphocytic Leukaemia. Lancet (London England) 371(9617):1017–1029

    Article  CAS  PubMed  Google Scholar 

  8. Bhattacharya M, Gutti RK (2022) Non-coding RNAs: are they the protagonist or antagonist in the regulation of Leukemia? Am J Translational Res 14(3):1406–1432

    CAS  Google Scholar 

  9. Ghazimoradi MH, Karimpour-Fard N, Babashah S (2023) The Promising Role of non-coding RNAs as biomarkers and therapeutic targets for Leukemia. Genes. ;14(1)

  10. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  CAS  PubMed  Google Scholar 

  11. Gupta J, Kareem Al-Hetty HRA, Aswood MS, Turki Jalil A, Azeez MD, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B (2023) The key role of microRNA-766 in the cancer development. Front Oncol 13:1173827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shcherbata HR (2019) miRNA functions in stem cells and their niches: lessons from the Drosophila ovary. Curr Opin Insect Sci 31:29–36

    Article  PubMed  Google Scholar 

  13. Hojbjerg JA, Ebert EBF, Clement MS, Winther-Larsen A, Meldgaard P, Sorensen B (2019) Circulating miR-30b and miR-30c predict erlotinib response in EGFR-mutated non-small cell Lung cancer patients. Lung cancer (Amsterdam Netherlands) 135:92–96

    Article  PubMed  Google Scholar 

  14. Li X, Zhao J, Zhang H, Cai J (2020) Silencing of LncRNA Metastasis-Associated Lung Adenocarcinoma transcript 1 inhibits the proliferation and promotes the apoptosis of gastric Cancer cells through regulating microRNA-22-3p-Mediated ErbB3. OncoTargets and Therapy 13:559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meng CY, Zhao ZQ, Bai R, Zhao W, Wang YX, Xue HQ, Sun L, Sun C, Feng W, Guo SB (2020) MicroRNA–22 mediates the cisplatin resistance of osteosarcoma cells by inhibiting autophagy via the PI3K/Akt/mTOR pathway. Oncol Rep 43(4):1169–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo J, Zhang J, Yang T, Zhang W, Liu M (2020) MiR-22 suppresses the growth and Metastasis of Bladder cancer cells by targeting E2F3. Int J Clin Exp Pathol 13(3):587–596

    PubMed  PubMed Central  Google Scholar 

  17. Polioudakis D, Bhinge AA, Killion PJ, Lee BK, Abell NS, Iyer VR (2013) A Myc-microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes. Nucleic Acids Res 41(4):2239–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vadla GP, Daghat B, Patterson N, Ahmad V, Perez G, Garcia A, Manjunath Y, Kaifi JT, Li G, Chabu CY (2022) Combining plasma extracellular vesicle Let-7b-5p, miR-184 and circulating mir-22-3p levels for NSCLC diagnosis and drug resistance prediction. Sci Rep 12(1):6693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Straniero L, Rimoldi V, Samarani M, Goldwurm S, Di Fonzo A, Krüger R, Deleidi M, Aureli M, Soldà G, Duga S, Asselta R (2017) The GBAP1 pseudogene acts as a ceRNA for the glucocerebrosidase gene GBA by sponging miR-22-3p. Sci Rep 7(1):12702

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10a):1902–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo MM, Hu LH, Wang YQ, Chen P, Huang JG, Lu N, He JH, Liao CG (2013) miR-22 is down-regulated in gastric cancer, and its overexpression inhibits cell migration and invasion via targeting transcription factor Sp1. 30(2):542 Medical oncology (Northwood, London, England)

  22. Ahmad HM, Muiwo P, Ramachandran SS, Pandey P, Gupta YK, Kumar L, Kulshreshtha R, Bhattacharya A (2014) miR-22 regulates expression of oncogenic neuro-epithelial transforming gene 1, NET1. FEBS J 281(17):3904–3919

    Article  CAS  PubMed  Google Scholar 

  23. Friedrich M, Heimer N, Stoehr C, Steven A, Wach S, Taubert H, Hartmann A, Seliger B (2020) CREB1 is affected by the microRNAs miR-22-3p, miR-26a-5p, miR-27a-3p, and mir-221-3p and correlates with adverse clinicopathological features in renal cell carcinoma. Sci Rep 10(1):6499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Budd WT, Seashols-Williams SJ, Clark GC, Weaver D, Calvert V, Petricoin E, Dragoescu EA, O’Hanlon K, Zehner ZE (2015) Dual action of miR-125b as a Tumor suppressor and OncomiR-22 promotes Prostate Cancer Tumorigenesis. PLoS ONE 10(11):e0142373

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu L, Jiang Y, Zhang H, Greenlee AR, Yu R, Yang Q (2010) miR-22 functions as a micro-oncogene in transformed human bronchial epithelial cells induced by anti-benzo[a]pyrene-7,8-diol-9,10-epoxide. Toxicol vitro: Int J Published Association BIBRA 24(4):1168–1175

    Article  CAS  Google Scholar 

  26. Nakamura M, Hayashi M, Konishi H, Nunode M, Ashihara K, Sasaki H, Terai Y, Ohmichi M (2020) MicroRNA-22 enhances radiosensitivity in Cervical cancer cell lines via direct inhibition of c-Myc binding protein, and the subsequent reduction in hTERT expression. Oncol Lett 19(3):2213–2222

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Tu L, Zhou X, Li B (2021) MicroRNA-22 regulates the proliferation, drug sensitivity and Metastasis of human glioma cells by targeting SNAIL1. J BUON: Official J Balkan Union Oncol 26(3):1185

    Google Scholar 

  28. Paliwal N, Vashist M, Chauhan M (2020) Evaluation of miR-22 and miR-21 as diagnostic biomarkers in patients with epithelial Ovarian cancer. 3 Biotech 10(3):142

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jiang X, Hu C, Arnovitz S, Bugno J, Yu M, Zuo Z, Chen P, Huang H, Ulrich B, Gurbuxani S, Weng H, Strong J, Wang Y, Li Y, Salat J, Li S, Elkahloun AG, Yang Y, Neilly MB, Larson RA, Le Beau MM, Herold T, Bohlander SK, Liu PP, Zhang J, Li Z, He C, Jin J, Hong S, Chen J (2016) miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid Leukaemia. Nat Commun 7:11452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qu H, Zheng G, Cheng S, Xie W, Liu X, Tao Y, Xie B (2020) Serum miR-22 is a novel prognostic marker for acute Myeloid Leukemia. J Clin Lab Anal 34(9):e23370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen C, Chen MT, Zhang XH, Yin XL, Ning HM, Su R, Lin HS, Song L, Wang F, Ma YN, Zhao HL, Yu J, Zhang JW (2016) The PU.1-Modulated MicroRNA-22 is a Regulator of Monocyte/Macrophage differentiation and Acute Myeloid Leukemia. PLoS Genet 12(9):e1006259

    Article  PubMed  PubMed Central  Google Scholar 

  32. Song SJ, Ito K, Ala U, Kats L, Webster K, Sun SM, Jongen-Lavrencic M, Manova-Todorova K, Teruya-Feldstein J, Avigan DE, Delwel R, Pandolfi PP (2013) The oncogenic microRNA miR-22 targets the TET2 Tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 13(1):87–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yao H, Duan M, Lin L, Wu C, Fu X, Wang H, Guo L, Chen W, Huang L, Liu D, Rao R, Wang S, Ding Y (2017) TET2 and MEG3 promoter methylation is associated with acute Myeloid Leukemia in a Hainan population. Oncotarget 8(11):18337–18347

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lionetti M, Agnelli L, Mosca L, Fabris S, Andronache A, Todoerti K, Ronchetti D, Deliliers GL, Neri A (2009) Integrative high-resolution microarray analysis of human Myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles. Genes Chromosomes Cancer 48(6):521–531

    Article  CAS  PubMed  Google Scholar 

  35. Ninomiya S, Tyybäkinoja A, Borze I, Räty R, Saarinen-Pihkala UM, Usvasalo A, Elonen E, Knuutila S (2012) Integrated analysis of gene copy number, copy Neutral LOH, and microRNA profiles in adult acute lymphoblastic Leukemia. Cytogenet Genome Res 136(4):246–255

    Article  CAS  PubMed  Google Scholar 

  36. Sankar M, Tanaka K, Kumaravel TS, Arif M, Shintani T, Yagi S, Kyo T, Dohy H, Kamada N (1998) Identification of a commonly deleted region at 17p13.3 in Leukemia and Lymphoma associated with 17p abnormality. Leukemia 12(4):510–516

    Article  CAS  PubMed  Google Scholar 

  37. Hosseinpour-Soleimani F, Khamisipour G, Derakhshan Z, Ahmadi B (2023) Expression analysis of circulating miR-22, miR-122, miR-217 and miR-367 as promising biomarkers of acute lymphoblastic Leukemia. Mol Biol Rep 50(1):255–265

    Article  CAS  PubMed  Google Scholar 

  38. Saccomani V, Grassi A, Piovan E, Bongiovanni D, Di Martino L, Minuzzo S, Tosello V, Zanovello P (2020) Mir-22-3p negatively affects Tumor Progression in T-Cell Acute Lymphoblastic Leukemia. Cells. ;9(7)

  39. Li X, Liu J, Zhou R, Huang S, Huang S, Chen XM (2010) Gene silencing of MIR22 in acute lymphoblastic Leukaemia involves histone modifications Independent of promoter DNA methylation. Br J Haematol 148(1):69–79

    Article  CAS  PubMed  Google Scholar 

  40. Ahmad HM, Muiwo P, Muthuswami R, Bhattacharya A (2017) FosB regulates expression of miR-22 during PMA induced differentiation of K562 cells to megakaryocytes. Biochimie 133:1–6

    Article  CAS  PubMed  Google Scholar 

  41. Palacios F, Abreu C, Prieto D, Morande P, Ruiz S, Fernández-Calero T, Naya H, Libisch G, Robello C, Landoni AI, Gabus R, Dighiero G, Oppezzo P (2015) Activation of the PI3K/AKT pathway by microRNA-22 results in CLL B-cell proliferation. Leukemia 29(1):115–125

    Article  CAS  PubMed  Google Scholar 

  42. Palacios F, Prieto D, Abreu C, Ruiz S, Morande P, Fernández-Calero T, Libisch G, Landoni AI, Oppezzo P (2015) Dissecting chronic lymphocytic Leukemia microenvironment signals in patients with unmutated Disease: microRNA-22 regulates phosphatase and tensin homolog/AKT/FOXO1 pathway in proliferative leukemic cells. Leuk Lymphoma 56(5):1560–1565

    Article  CAS  PubMed  Google Scholar 

  43. Lionetti M, Musto P, Di Martino MT, Fabris S, Agnelli L, Todoerti K, Tuana G, Mosca L, Gallo Cantafio ME, Grieco V, Bianchino G, D’Auria F, Statuto T, Mazzoccoli C, De Luca L, Petrucci MT, Offidani M, Di Raimondo F, Falcone A, Caravita T, Omede P, Morabito F, Tassone P, Boccadoro M, Palumbo A, Neri A (2013) Biological and clinical relevance of miRNA expression signatures in primary plasma cell Leukemia. Clin cancer Research: Official J Am Association Cancer Res 19(12):3130–3142

    Article  CAS  Google Scholar 

  44. Jian P, Li ZW, Fang TY, Jian W, Zhuan Z, Mei LX, Yan WS, Jian N (2011) Retinoic acid induces HL-60 cell differentiation via the upregulation of miR-663. J Hematol Oncol 4:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ting Y, Medina DJ, Strair RK, Schaar DG (2010) Differentiation-associated miR-22 represses Max expression and inhibits cell cycle progression. Biochem Biophys Res Commun 394(3):606–611

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Studzinski GP (2011) Oncoprotein Cot1 represses kinase suppressors of Ras1/2 and 1,25-dihydroxyvitamin D3-induced differentiation of human acute Myeloid Leukemia cells. J Cell Physiol 226(5):1232–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nowak D, Stewart D, Koeffler HP (2009) Differentiation therapy of Leukemia: 3 decades of development. Blood 113(16):3655–3665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tan TW, Tsai HR, Lu HF, Lin HL, Tsou MF, Lin YT, Tsai HY, Chen YF, Chung JG (2006) Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic Leukemia HL-60 cells via MMP changes and caspase-3 activation. Anticancer Res 26(6b):4361–4371

    CAS  PubMed  Google Scholar 

  49. Ng KP, Manjeri A, Lee KL, Huang W, Tan SY, Chuah CT, Poellinger L, Ong ST (2014) Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition. Blood 123(21):3316–3326

    Article  CAS  PubMed  Google Scholar 

  50. Monteleone F, Taverna S, Alessandro R, Fontana S (2018) SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affecting the activity of miR-22/IPO7/HIF-1α axis. J Experimental Clin cancer Research: CR 37(1):170

    Article  PubMed Central  Google Scholar 

  51. Chen H, Shen Y, Gong F, Jiang Y, Zhang R (2015) HIF-α promotes chronic myelogenous Leukemia cell proliferation by upregulating p21 expression. Cell Biochem Biophys 72(1):179–183

    Article  CAS  PubMed  Google Scholar 

  52. Saleh LM, Wang W, Herman SE, Saba NS, Anastas V, Barber E, Corrigan-Cummins M, Farooqui M, Sun C, Sarasua SM, Zhao Z, Abousamra NK, Elbaz O, Abdelghaffar HA, Wiestner A, Calvo KR (2017) Ibrutinib downregulates a subset of miRNA leading to upregulation of Tumor suppressors and inhibition of cell proliferation in chronic lymphocytic Leukemia. Leukemia 31(2):340–349

    Article  CAS  PubMed  Google Scholar 

  53. Lee YC, Chiou JT, Chang LS (2023) AMPK inhibition induces MCL1 mRNA destabilization via the p38 MAPK/miR-22/HuR axis in chronic Myeloid Leukemia cells. Biochem Pharmacol 209:115442

    Article  CAS  PubMed  Google Scholar 

  54. Yun J, Ji YS, Jang GH, Lim SH, Kim SH, Kim CK, Bae SB, Won JH, Park SK (2021) TET2 mutation and high miR-22 expression as biomarkers to Predict Clinical Outcome in Myelodysplastic Syndrome patients treated with hypomethylating therapy. Curr Issues Mol Biol 43(2):917–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was funded by The Excellent Medical Experts Team of Wuxi Taihu Talent Program (YXTD202101), Key Program of Jiangsu Health Commission (ZDA2020013), Special Project Funds of Scientific Research of Jiangsu Medical Association (SYH-32034-0084, 20230031), Science and Technology Development Fund Project of Nanjing Medical University (NMUB2020285).

Author information

Authors and Affiliations

Authors

Contributions

Tianyu Li: Conceptualization, supervision, review; Jing Xia, Chaozhi Bu and Bing Zhang: Preparation of original draft; Yuejuan Chen and Xingqing Wang: Reference collection. All authors contributed to literature search and information collection, discussion, and revision.

Corresponding author

Correspondence to Tianyu Li.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Bu, C., Zhang, B. et al. The emerging role of microRNA-22 in the Leukemia: experimental and clinical implications. Mol Biol Rep 51, 12 (2024). https://doi.org/10.1007/s11033-023-08922-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-08922-3

Keywords

Navigation