Skip to main content

Advertisement

Log in

Quercetin-loaded solid lipid nanoparticles exhibit antitumor activity and suppress the proliferation of triple-negative MDA-MB 231 breast cancer cells: implications for invasive breast cancer treatment

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Quercetin (QC) is a naturally occurring flavonoid found in abundance in fruits and vegetables. Its anti-cancer and anti-inflammatory properties have been previously demonstrated, but its low bioavailability hampers its clinical use. Triple-negative breast cancer is a subtype of breast cancer with a poor response to chemotherapy. This study investigates the anti-cancer effects of quercetin-solid lipid nanoparticles (QC-SLN) on the triple-negative breast cancer cell line MDA-MB231.

Materials and methods

MCF-7 and MDA-MB231 cells were treated with 18.9 µM of QC and QC-SLN for 48 h. Cell viability, apoptosis, colony formation assay, and the anti-angiogenic effects of the treatment were evaluated.

Results

QC-SLN displayed optimal properties (particle size of 154 nm, zeta potential of –27.7 mV, encapsulation efficiency of 99.6%, and drug loading of 1.81%) and exhibited sustained release of QC over 72 h. Compared to the QC group, the QC-SLN group showed a significant decrease in cell viability, colony formation, angiogenesis, and a substantial increase in apoptosis through the modulation of Bax and Bcl-2 at both gene and protein levels. The augmentation in the proportion of cleaved-to-pro caspases 3 and 9, as well as poly (ADP-ribose) polymerase (PARP), under the influence of QC-SLN, was conspicuously observed in both cancer cell lines.

Conclusions

This study showcases quercetin-solid lipid nanoparticles (QC-SLN) as a promising therapy for triple-negative breast cancer. The optimized QC-SLN formulation improved physicochemical properties and sustained quercetin release, resulting in reduced cell viability, colony formation, angiogenesis, and increased apoptosis in the MDA-MB231 cell line. These effects were driven by modulating Bax and Bcl-2 expression, activating caspases 3 and 9, and poly (ADP-ribose) polymerase (PARP). Further in vivo studies are needed to confirm QC-SLN’s efficacy and safety.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data and materials used and/or analyzed during the current study are available from the corresponding author on request.

References

  1. Tinoco G, Warsch S, Glück S, Avancha K, Montero AJ (2013) Treating breast cancer in the 21st century: emerging biological therapies. J Cancer 4:117

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gadhwal M, Patil S, D’Mello P, Joshi U, Sinha R, Govil G (2013) Synthesis, characterisation and antitumour activity of some quercetin analogues. Indian J Pharm Sci 75:233

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E et al (2011) Quercetin and cancer chemoprevention. Evid Based Complement Altern Med. https://doi.org/10.1093/ecam/neq053

    Article  Google Scholar 

  4. Dar RA, Rasool M, Assad A (2022) Breast cancer detection using deep learning: datasets, methods, and challenges ahead. Comput Biol Med 149:106073

    Article  PubMed  Google Scholar 

  5. Lv W, Budke B, Pawlowski M, Connell PP, Kozikowski AP (2016) Development of small molecules that specifically inhibit the D-loop activity of RAD51. J Med Chem 59:4511–4525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aiello F, Carullo G, Giordano F, Spina E, Nigro A, Garofalo A et al (2017) Identification of breast cancer inhibitors specific for G protein-coupled estrogen receptor (GPER)-expressing cells. ChemMedChem 12:1279–1285

    Article  CAS  PubMed  Google Scholar 

  7. Dandawate PR, Subramaniam D, Jensen RA, Anant S (2016) Targeting cancer stem cells and signaling pathways by phytochemicals: novel approach for breast cancer therapy. Semin Cancer Biol 40:192–208

    Article  PubMed  Google Scholar 

  8. Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M et al (2016) Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep 6:1–13

    Article  Google Scholar 

  9. Tummala R, Lou W, Gao AC, Nadiminty N (2017) Quercetin targets hnRNPA1 to Overcome enzalutamide resistance in prostate cancer cellsquercetin targets hnRNPA1 and synergizes with enzalutamide. Mol Cancer Ther 16:2770–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lamson DW, Brignall MS (2000) Antioxidants and cancer, part 3: quercetin. A J Clin Med Ther 5:196–208

    CAS  Google Scholar 

  11. Davis JM, Murphy EA, Carmichael MD (2009) Effects of the dietary flavonoid quercetin upon performance and health. Curr Sports Med Rep 8:206–213

    Article  PubMed  Google Scholar 

  12. Shakerian E, Afarin R, Akbari R, Mohammadtaghvaei NJMBR (2022) Effect of Quercetin on the fructose-activated human hepatic stellate cells, LX-2, an in-vitro study. Mol Biol Rep 49:2839–2845

    Article  CAS  PubMed  Google Scholar 

  13. Shakerian E, Akbari R, Mohammadtaghvaei N, Gahrooie MM, Afarin R (2022) Quercetin reduces hepatic fibrogenesis by inhibiting TGF-β/Smad3 signaling pathway in LX-2 cell line. Jundishapur J Nat Pharm Prod. https://doi.org/10.5812/jjnpp.113484

    Article  Google Scholar 

  14. Dhumale SS, Waghela BN, Pathak C (2015) Quercetin protects necrotic insult and promotes apoptosis by attenuating the expression of RAGE and its ligand HMGB1 in human breast adenocarcinoma cells. IUBMB Life 67:361–373

    Article  CAS  PubMed  Google Scholar 

  15. Rauf A, Imran M, Khan IA, ur-Rehman M, Gilani SA, Mehmood Z et al (2018) Anticancer potential of quercetin: a comprehensive review. Phytother Res 32:2109–2130

    Article  CAS  PubMed  Google Scholar 

  16. Abd-Rabou AA, Ahmed HHJA (2017) CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: a novel approach for induction of apoptosis in HepG2 cell line. Adv Med Sci 62:357–367

    Article  PubMed  Google Scholar 

  17. Jain A, Garg NK, Jain A, Kesharwani P, Jain AK, Nirbhavane P et al (2016) A synergistic approach of adapalene-loaded nanostructured lipid carriers, and vitamin C co-administration for treating acne. Drug Dev Ind Pharm 42:897–905

    Article  CAS  PubMed  Google Scholar 

  18. Mombeini M, Saki G, Khorsandi L, Bavarsad N (2018) Effects of silymarin-loaded nanoparticles on HT-29 human colon cancer cells. Medicina 54:1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang W, Zhang L, Chen T, Guo W, Bao X, Wang D et al (2017) Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells. Molecules 22:1814

    Article  PubMed  PubMed Central  Google Scholar 

  20. Balakrishnan S, Mukherjee S, Das S, Bhat FA, Raja Singh P, Patra CR et al (2017) Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt–mediated pathway in breast cancer cell lines (MCF-7 and MDA‐MB‐231). Cell Biochem Funct 35:217–231

    Article  CAS  PubMed  Google Scholar 

  21. Govindaraju S, Rengaraj A, Arivazhagan R, Huh Y-S, Yun K (2018) Curcumin-conjugated gold clusters for bioimaging and anticancer applications. Bioconjug Chem 29:363–370

    Article  CAS  PubMed  Google Scholar 

  22. Abbasalipourkabir R, Salehzadeh A, Abdullah R (2016) Tamoxifen-loaded solid lipid nanoparticles-induced apoptosis in breast cancer cell lines. J Exp Nanosci 11:161–174

    Article  CAS  Google Scholar 

  23. Hwang JH, Kim SJ, Kim Y-H, Noh J-R, Gang G-T, Chung BH et al (2012) Susceptibility to gold nanoparticle-induced hepatotoxicity is enhanced in a mouse model of nonalcoholic steatohepatitis. Toxicology 294:27–35

    Article  CAS  PubMed  Google Scholar 

  24. Badawi NM, Teaima MH, El-Say KM, Attia DA, El-Nabarawi MA, Elmazar MM (2018) Pomegranate extract-loaded solid lipid nanoparticles: design, optimization, and in vitro cytotoxicity study. Int J Nanomed 13:1313

    Article  CAS  Google Scholar 

  25. Stella B, Peira E, Dianzani C, Gallarate M, Battaglia L, Gigliotti CL et al (2018) Development and characterization of solid lipid nanoparticles loaded with a highly active doxorubicin derivative. Nanomaterials 8:110

    Article  PubMed  PubMed Central  Google Scholar 

  26. Baek J-S, Na Y-G, Cho C-W (2018) Sustained cytotoxicity of wogonin on breast cancer cells by encapsulation in solid lipid nanoparticles. Nanomaterials 8:159

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang W, Chen T, Xu H, Ren B, Cheng X, Qi R et al (2018) Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules 23:1578

    Article  PubMed  PubMed Central  Google Scholar 

  28. Niu G, Yin S, Xie S, Li Y, Nie D, Ma L et al (2011) Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells. Acta Biochim Biophys Sin 43:30–37

    Article  CAS  PubMed  Google Scholar 

  29. Zhao W, Li H, Hou Y, Jin Y, Zhang L (2019) Combined administration of poly-ADP-ribose polymerase-1 and caspase-3 inhibitors alleviates neuronal apoptosis after spinal cord injury in rats. World Neurosurg 127:e346–e352

    Article  PubMed  Google Scholar 

  30. Vijayakumar A, Baskaran R, Jang YS, Oh SH, Yoo BK (2017) Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS PharmSciTech 8:875–883

    Article  Google Scholar 

  31. Abbasalipurkabir R, Salehzadeh A, Abdullah R (2011) Delivering tamoxifen within solid lipid nanoparticles. Pharm Technol 35:74–79

    Google Scholar 

  32. Nie S, Hsiao WL, Pan W, Yang Z (2011) Thermoreversible pluronic F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: in vitro drug release, cell cytotoxicity, and uptake studies. Int J Nanomed 6:151–166

    CAS  Google Scholar 

  33. Niazvand F, Orazizadeh M, Khorsandi L, Abbaspour M, Mansouri E, Khodadadi A (2019) Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells. Medicina 55:114

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lin Y-C, Tsai P-H, Lin C-Y, Cheng C-H, Lin T-H, Lee KP et al (2013) Impact of flavonoids on matrix metalloproteinase secretion and invadopodia formation in highly invasive A431-III cancer cells. PLoS One 8:e71903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu Q, Kroon PA, Shao H, Needs PW, Yang X (2018) Differential effects of quercetin and two of its derivatives, isorhamnetin and isorhamnetin-3-glucuronide, in inhibiting the proliferation of human breast-cancer MCF-7 cells. J Agric Food Chem 66:7181–7189

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Zhou N, Wang J, Liu Z, Wang X, Zhang Q et al (2018) Quercetin suppresses breast cancer stem cells (CD44+/CD24–) by inhibiting the PI3K/Akt/mTOR-signaling pathway. Life Sci 196:56–62

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Wang S, Chen R, Wang Y, Li H, Wang Y et al (2014) Oridonin loaded solid lipid nanoparticles enhanced antitumor activity in MCF-7 cells. J Nanomater. https://doi.org/10.1155/2014/903646

    Article  Google Scholar 

  38. Wang L, Li H, Wang S, Liu R, Wu Z, Wang C et al (2014) Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech 15:834–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhuang Y-G, Xu B, Huang F, Wu J-J, Chen S (2012) Solid lipid nanoparticles of anticancer drugs against MCF-7 cell line and a murine breast cancer model. J Pharm Sci 67:925–929

    CAS  Google Scholar 

  40. Sun M, Nie S, Pan X, Zhang R, Fan Z, Wang S et al (2014) Quercetin-nanostructured lipid carriers: characteristics and anti-breast cancer activities in vitro. Colloids Surf B Biointerfaces 113:15–24

    Article  CAS  PubMed  Google Scholar 

  41. Fulda SJIjoc (2009) Tumor resistance to apoptosis. Int J Cancer 124:511–515

    Article  Google Scholar 

  42. Naumov GN, Akslen LA, Folkman J (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5:1779–1787

    Article  CAS  PubMed  Google Scholar 

  43. Jain AK, Thanki K, Jain S (2014) Novel self-nanoemulsifying formulation of quercetin: implications of pro-oxidant activity on the anticancer efficacy. Nanomed Biol Med 10:e959–e969

    Article  Google Scholar 

  44. Boots AW, Wilms LC, Swennen EL, Kleinjans JC, Bast A, Haenen GR (2008) In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers. Nutrition 24:703–710

    Article  CAS  PubMed  Google Scholar 

  45. Duan J, Mansour HM, Zhang Y, Deng X, Chen Y, Wang J et al (2012) Reversion of multidrug resistance by co-encapsulation of doxorubicin and curcumin in chitosan/poly (butyl cyanoacrylate) nanoparticles. Int J Pharm 426:193–201

    Article  CAS  PubMed  Google Scholar 

  46. Haghiac M, Walle T (2005) Quercetin induces necrosis and apoptosis in SCC-9 oral cancer cells. Nutr Cancer 53:220–231

    Article  CAS  PubMed  Google Scholar 

  47. Lee D-H, Szczepanski M, Lee Y (2008) Role of bax in quercetin-induced apoptosis in human prostate cancer cells. Biochem Pharmacol 75:2345–2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duo J, Ying G-G, Wang G-W, Zhang L (2012) Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and bax regulation. Mol Med Rep 5:1453–1456

    CAS  PubMed  Google Scholar 

  49. Seo H-S, Ku JM, Choi H-S, Choi YK, Woo J-K, Kim M et al (2016) Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells. Oncol Rep 36:31–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gao X, Wang B, Wei X, Men K, Zheng F, Zhou Y et al (2012) Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale 4:7021–7030

    Article  CAS  PubMed  Google Scholar 

  51. Chaitanya GV, Alexander JS, Babu PP (2010) PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8:1–11

    Article  Google Scholar 

  52. Herceg Z, Wang Z-Q (1999) Failure of poly (ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol Cell Biol 19:5124–5133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gobeil S, Boucher C, Nadeau D, Poirier G (2001) Characterization of the necrotic cleavage of poly (ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ 8:588–594

    Article  CAS  PubMed  Google Scholar 

  54. Yuan JJA (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 14:469–477

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mohammadzadeh G (2021) Quercetin synergistically potentiates the anti-angiogenic effect of 5-fluorouracil on HUVEC cell line. Mol Biol Rep. https://doi.org/10.21203/rs.3.rs-555480/v1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research was financially supported by grant number CMRC − 9914 from the Cellular and molecular research center, medical basic sciences research institute Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. This paper was extracted from PhD thesis of Mahdi Hatami.

Funding

The research was financially supported by the Cellular and Molecular Research Center of Ahvaz Jundishapur University of Medical Sciences (CMRC - 9914), Ahvaz, Iran.

Author information

Authors and Affiliations

Authors

Contributions

MR significantly contributed to the conceptualization and design of the work. MK and LK prepared and updated the material. AK: data analysis and interpretation. MH: the acquisition, interpretation, and analysis of data.

Corresponding author

Correspondence to Mojtaba Rashidi.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Ethical approval

IR.AJUMS.REC.1399.509.

Research involving human and/or animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

All of the authors declare consent to participate and consent for the publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatami, M., Kouchak, M., Kheirollah, A. et al. Quercetin-loaded solid lipid nanoparticles exhibit antitumor activity and suppress the proliferation of triple-negative MDA-MB 231 breast cancer cells: implications for invasive breast cancer treatment. Mol Biol Rep 50, 9417–9430 (2023). https://doi.org/10.1007/s11033-023-08848-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08848-w

Keywords

Navigation