Skip to main content
Log in

Novel plant disease detection techniques-a brief review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Plant pathogens cause severe losses to agricultural yield worldwide. Tracking plant health and early disease detection is important to reduce the disease spread and thus economic loss. Though visual scouting has been practiced from former times, detection of asymptomatic disease conditions is difficult. So, DNA-based and serological methods gained importance in plant disease detection. The progress in advanced technologies challenges the development of rapid, non-invasive, and on-field detection techniques such as spectroscopy. This review highlights various direct and indirect ways of detecting plant diseases like Enzyme-linked immunosorbent assay, Lateral flow assays, Polymerase chain reaction, spectroscopic techniques and biosensors. Although these techniques are sensitive and pathogen-specific, they are more laborious and time-intensive. As a consequence, a lot of interest is gained in in-field adaptable point-of-care devices with artificial intelligence-assisted pathogen detection at an early stage. More recently computer-aided techniques like neural networks are gaining significance in plant disease detection by image processing. In addition, a concise report on the latest progress achieved in plant disease detection techniques is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Abukhalaf N, Salman M (2014) Visible/Near infrared (VIS/NIR) spectroscopy and multivariate data analysis (MVDA) for identification and quantification of olive leaf spot (OLS) disease. Palestine Tech Univ Res J 2(1):1

    Article  Google Scholar 

  2. Adams IP, Miano DW, Kinyua ZM, Wangai A, Kimani E, Phiri N, Reeder R, Harju V, Glover R, Hany U, Souza-Richards R (2013) Use of next‐generation sequencing for the identification and characterization of Maize chlorotic mottle virus and sugarcane mosaic virus causing maize lethal necrosis in K enya. Plant Pathol 62(4):741–749

    Article  CAS  Google Scholar 

  3. Adriko J, Aritua V, Mortensen CN, Tushemereirwe WK, Kubiriba J, Lund OS (2012) Multiplex PCR for specific and robust detection of Xanthomonas campestris pv. Musacearum in pure culture and infected plant material. Plant Pathol 61(3):489–497

    Article  CAS  Google Scholar 

  4. Aglietti C, Luchi N, Pepori AL, Bartolini P, Pecori F, Raio A, Capretti P, Santini A (2019) Real-time loop-mediated isothermal amplification: an early-warning tool for quarantine plant pathogen detection. AMB Express 9:1–14

    Article  CAS  Google Scholar 

  5. Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391(5):1609–1618

    Article  CAS  PubMed  Google Scholar 

  6. Alkowni R, Alabdallah O, Fadda Z (2019) Molecular identification of tomato brown rugose fruit virus in tomato in Palestine. J Plant Pathol 101:719–723

    Article  Google Scholar 

  7. Alvandi H, Taghavi SM, Khojasteh M, Rahimi T, Dutrieux C, Taghouti G, Jacques MA, Portier P, Osdaghi E (2023) Pathovar-Specific PCR Method for Detection and Identification of Xanthomonas translucens pv. undulosa. Plant Disease, (ja)

  8. Alvarez AM, Lou K (1985) Rapid identification of Xanthomonas campestris pv. Campestris by ELISA. Plant Dis 69(12):1082–1086

    Article  Google Scholar 

  9. Alvarez AM (2004) Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Annu Rev Phytopathol 42:339–366

    Article  CAS  PubMed  Google Scholar 

  10. Arivazhagan S, Ligi SV (2018) Mango leaf diseases identification using convolutional neural network. Int J Pure Appl Math 120(6):11067–11079

    Google Scholar 

  11. Arsenovic M, Karanovic M, Sladojevic S, Anderla A, Stefanovic D (2019) Solving current limitations of deep learning based approaches for plant disease detection. Symmetry 11(7):939

    Article  Google Scholar 

  12. Asano S, Matsushita Y, Hirayama Y, Naka T (2015) Simultaneous detection of T omato spotted wilt virus, D ahlia mosaic virus and C hrysanthemum stunt viroid by multiplex RT-PCR in dahlias and their distribution in japanese dahlias. Lett Appl Microbiol 61(2):113–120

    Article  CAS  PubMed  Google Scholar 

  13. Ashmawy NA, El-Bebany AF, Shams AH, Shoeib AA (2020) Identification and differentiation of soft rot and blackleg bacteria from potato using nested and multiplex PCR. J Plant Dis Prot 127(2):141–153

    Article  Google Scholar 

  14. Ashqar BA, Abu-Naser SS (2018) Image-based tomato leaves diseases detection using deep learning

  15. Awasthi LP (ed) (2015) Recent advances in the diagnosis and management of plant diseases

  16. Balestra GM, Taratufolo MC, Vinatzer BA, Mazzaglia A (2013) A multiplex PCR assay for detection of Pseudomonas syringae pv. Actinidiae and differentiation of populations with different geographic origin. Plant Dis 97(4):472–478

    Article  CAS  PubMed  Google Scholar 

  17. Balodi R, Bisht S, Ghatak A, Rao KH (2017) Plant disease diagnosis: technological advancements and challenges. Indian Phytopathol 70(3):275–281

    Article  Google Scholar 

  18. Bangratz M, Wonni I, Kini K, Sondo M, Brugidou C, Béna G, Gnacko F, Barro M, Koebnik R, Silué D, Tollenaere C (2020) Design of a new multiplex PCR assay for rice pathogenic bacteria detection and its application to infer disease incidence and detect co-infection in rice fields in Burkina Faso. PLoS ONE 15(4):e0232115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Batool A, Khan MA, Farooq J, Mughal SM, Iftikhar Y (2011) ELISA-based screening of potato germplasm against potato leaf roll virus. J Agric Res 49(1):57–63

    Google Scholar 

  20. Bedi P, Gole P (2021) Plant disease detection using hybrid model based on convolutional autoencoder and convolutional neural network. Artif Intell Agric 5:90–101

    Google Scholar 

  21. Bhat RG, Browne GT (2010) Specific detection of Phytophthora cactorum in diseased strawberry plants using nested polymerase chain reaction. Plant Pathol 59(1):121–129

    Article  CAS  Google Scholar 

  22. Bi X, Hieno A, Otsubo K, Kageyama K, Liu G, Li M (2019) A multiplex PCR assay for three pathogenic Phytophthora species related to kiwifruit diseases in China. J Gen Plant Pathol 85(1):12–22

    Article  CAS  Google Scholar 

  23. Boulent J, Foucher S, Théau J, St-Charles PL (2019) Convolutional neural networks for the automatic identification of plant diseases. Front Plant Sci 10:941

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bürling K, Hunsche M, Noga G (2011) Use of blue–green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. J Plant Physiol 168(14):1641–1648

    Article  PubMed  Google Scholar 

  25. Chandelier A, Massot M, Fabreguettes O, Gischer F, Teng F, Robin C (2019) Early detection of Cryphonectria parasitica by real-time PCR. Eur J Plant Pathol 153(1):29–46

    Article  CAS  Google Scholar 

  26. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360(6387):436–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen ZD, Kang HJ, Chai AL, Shi YX, Xie XW, Li L, Li BJ (2020) Development of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Pseudomonas syringae pv. Tomato in planta. Eur J Plant Pathol 156:739–750

    Article  CAS  Google Scholar 

  28. Chiriacò MS, Luvisi A, Primiceri E, Sabella E, De Bellis L, Maruccio G (2018) Development of a lab-on-a-chip method for rapid assay of Xylella fastidiosa subsp. pauca strain CoDiRO. Sci Rep 8(1):7376

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cigna J, Dewaegeneire P, Beury A, Gobert V, Faure D (2017) A gapA PCR-sequencing assay for identifying the Dickeya and Pectobacterium potato pathogens. Plant Dis 101(7):1278–1282

    Article  CAS  PubMed  Google Scholar 

  30. Conti M, Cinget B, Vivancos J, Oudemans P, Bélanger RR (2019) A molecular assay allows the simultaneous detection of 12 fungi causing fruit rot in cranberry. Plant Dis 103(11):2843–2850

    Article  CAS  PubMed  Google Scholar 

  31. Cojocaru N, Bădărău CL, Doloiu M (2009) Potato virus Y purification and achievement of antisera for identification of infected plants by ELISA technique. Lucrări Științifice-Universitatea de Științe Agronomice Și Medicină Veterinară București. Seria F, Biotehnologii. Special Volume, pp 18–25

  32. Crosslin JM, Hamlin LL (2011) Standardized RT-PCR conditions for detection and identification of eleven viruses of potato and potato spindle tuber viroid. Am J Potato Res 88(4):333–338

    Article  Google Scholar 

  33. Depotter JR, Rodriguez-Moreno L, Thomma BP, Wood TA (2017) The emerging british Verticillium longisporum population consists of aggressive Brassica pathogens. Phytopathology 107(11):1399–1405

    Article  PubMed  Google Scholar 

  34. do Cardinali B, Boas MC, Milori PRV, Ferreira DMBP, e Silva EJ, Machado MF, M.A. and, Bellete BS (2012) Infrared spectroscopy: a potential tool in huanglongbing and citrus variegated chlorosis diagnosis. Talanta 91:1–6

    Article  CAS  PubMed  Google Scholar 

  35. Doddaraju P, Kumar P, Gunnaiah R, Gowda AA, Lokesh V, Pujer P, Manjunatha G (2019) Reliable and early diagnosis of bacterial blight in pomegranate caused by Xanthomonas axonopodis pv. Punicae using sensitive PCR techniques. Sci Rep 9(1):10097

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fang Y, Umasankar Y, Ramasamy RP (2014) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139(15):3804–3810

    Article  CAS  PubMed  Google Scholar 

  37. Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5(3):537–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Farber C, Kurouski D (2018) Detection and identification of plant pathogens on maize kernels with a hand-held Raman spectrometer. Anal Chem 90(5):3009–3012

    Article  CAS  PubMed  Google Scholar 

  39. Ferentinos KP (2018) Deep learning models for plant disease detection and diagnosis. Comput Electron Agric 145:311–318

    Article  Google Scholar 

  40. Gold KM, Townsend PA, Chlus A, Herrmann I, Couture JJ, Larson ER, Gevens AJ (2020) Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sensing, 12(2), p.286

  41. Golhani K, Balasundram SK, Vadamalai G, Pradhan B (2018) A review of neural networks in plant disease detection using hyperspectral data. Inform Process Agric 5(3):354–371

    Google Scholar 

  42. Gürtler V, Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142(1):3–16

    Article  PubMed  Google Scholar 

  43. Hariharan G, Prasannath K (2021) Recent advances in molecular diagnostics of fungal plant pathogens: A mini review. Frontiers in Cellular and Infection Microbiology, 10, p.600234

  44. Harper SJ, Ward LI, Clover GRG (2010) Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology 100(12):1282–1288

    Article  CAS  PubMed  Google Scholar 

  45. Hashemi Tameh M, Primiceri E, Chiriacò MS, Poltronieri P, Bahar M, Maruccio G (2020) Pectobacterium atrosepticum biosensor for monitoring blackleg and soft rot disease of potato. Biosensors, 10(6), p.64

  46. Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH (1997) Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23(3):504–511

    Article  CAS  PubMed  Google Scholar 

  47. Henry Sum MS, Yee SF, Eng L, Poili E, Lamdin J (2017) Development of an indirect ELISA and dot-blot assay for serological detection of Rice tungro disease. BioMed research international, 2017

  48. He WQ, Wu JY, Ren YY, Zhou XP, Zhang SB, Qian YJ, Li FF, Wu JX (2020) Highly sensitive serological approaches for Pepino mosaic virus detection. J Zhejiang University-SCIENCE B 21(10):811–822

    Article  CAS  Google Scholar 

  49. Hyun JW, Jung KE (2017) Development of multiplex PCR for simultaneous detection of citrus viruses and the incidence of citrus viral diseases in late-maturity citrus trees in Jeju Island. The Plant Pathology Journal, 33(3), p.307

  50. Inderbitzin P, Davis RM, Bostock RM, Subbarao KV (2013) Identification and differentiation of Verticillium species and V. longisporum lineages by simplex and multiplex PCR assays. PLoS ONE 8(6):e65990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kang IJ, Kang MH, Noh TH, Shim HK, Shin DB, Heu S (2016) Simultaneous detection of three bacterial seed-borne diseases in rice using multiplex polymerase chain reaction. The plant pathology journal, 32(6), p.575

  52. Khater M, De La Escosura-Muñiz A, Merkoçi A (2017) Biosensors for plant pathogen detection. Biosens Bioelectron 93:72–86

    Article  CAS  PubMed  Google Scholar 

  53. Khirade SD, Patil AB (2015) February. Plant disease detection using image processing. In 2015 International conference on computing communication control and automation (pp. 768–771). IEEE

  54. Kokane AD, Kokane SB, Warghane AJ, Gubyad MG, Sharma AK, Reddy MK, Ghosh DK (2021) A rapid and sensitive reverse transcription–loop-mediated isothermal amplification (RT-LAMP) assay for the detection of indian Citrus Ringspot Virus. Plant Dis 105(05):1346–1355

    Article  CAS  PubMed  Google Scholar 

  55. Kumar PV, Sharma SK, Rishi N, Baranwal VK (2018) Efficient immunodiagnosis of Citrus yellow mosaic virus using polyclonal antibodies with an expressed recombinant virion-associated protein. 3 Biotech 8(1):1–7

    Article  Google Scholar 

  56. Kumar S, Udaya Shankar AC, Nayaka SC, Lund OS, Prakash HS (2011) Detection of Tobacco mosaic virus and tomato mosaic virus in pepper and tomato by multiplex RT–PCR. Lett Appl Microbiol 53(3):359–363

    Article  CAS  PubMed  Google Scholar 

  57. Larrea-Sarmiento A, Dhakal U, Boluk G, Fatdal L, Alvarez A, Strayer-Scherer A, Paret M, Jones J, Jenkins D, Arif M (2018) Development of a genome-informed loop-mediated isothermal amplification assay for rapid and specific detection of Xanthomonas euvesicatoria. Scientific Reports, 8(1), p.14298

  58. Lau HY, Wu H, Wee EJ, Trau M, Wang Y, Botella JR (2017) Specific and sensitive isothermal electrochemical biosensor for plant pathogen DNA detection with colloidal gold nanoparticles as probes. Scientific reports, 7(1), p.38896

  59. Le DT, Vu NT (2017) Progress of loop-mediated isothermal amplification technique in molecular diagnosis of plant diseases. Appl Biol Chem 60(2):169–180

    Article  CAS  Google Scholar 

  60. Lees AK, Roberts DM, Lynott J, Sullivan L, Brierley JL (2019) Real-time PCR and LAMP assays for the detection of spores of Alternaria solani and sporangia of Phytophthora infestans to inform disease risk forecasting. Plant Dis 103(12):3172–3180

    Article  CAS  PubMed  Google Scholar 

  61. Lee TY, Lin IA, Yu JY, Yang JM, Chang YC (2021) High efficiency disease detection for Potato Leaf with convolutional neural network. SN Comput Sci 2(4):1–11

    Article  Google Scholar 

  62. Li D, Wang R, Xie C, Liu L, Zhang J, Li R, Wang F, Zhou M, Liu W (2020) A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network. Sensors, 20(3), p.578

  63. Li M, Asano T, Suga H, Kageyama K (2011) A multiplex PCR for the detection of Phytophthora nicotianae and P. cactorum, and a survey of their occurrence in strawberry production areas of Japan. Plant Dis 95(10):1270–1278

    Article  CAS  PubMed  Google Scholar 

  64. Li Z, Paul R, Ba Tis T, Saville AC, Hansel JC, Yu T, Ristaino JB, Wei Q (2019) Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat Plants 5(8):856–866

    Article  CAS  PubMed  Google Scholar 

  65. Liu H, Wu K, Wu W, Mi W, Hao X, Wu Y (2019) A multiplex reverse transcription PCR assay for simultaneous detection of six main RNA viruses in tomato plants. J Virol Methods 265:53–58

    Article  CAS  PubMed  Google Scholar 

  66. Loconsole G, Saldarelli P, Doddapaneni H, Savino V, Martelli GP, Saponari M (2012) Identification of a single-stranded DNA virus associated with citrus chlorotic dwarf disease, a new member in the family Geminiviridae. Virology 432(1):162–172

    Article  CAS  PubMed  Google Scholar 

  67. Machmud M, Suryadi Y (2008) Detection and identification of Ralstonia solanacearum strains using the indirect ELISA technique. Indonesian J Agric 1(1):13–21

    Google Scholar 

  68. Mahas A, Hassan N, Aman R, Marsic T, Wang Q, Ali Z, Mahfouz MM (2021) LAMP-Coupled CRISPR–Cas12a Module for Rapid and Sensitive Detection of Plant DNA Viruses. Viruses, 13(3), p.466

  69. Malecka K, Michalczuk L, Radecka H, Radecki J (2014) Ion-channel genosensor for the detection of specific DNA sequences derived from plum pox virus in plant extracts. Sensors 14(10):18611–18624

    Article  PubMed  PubMed Central  Google Scholar 

  70. Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR, Davis CE (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35(1):1–25

    Article  Google Scholar 

  71. Matsushita Y, Usugi T, Tsuda S (2010) Development of a multiplex RT-PCR detection and identification system for Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. Eur J Plant Pathol 128(2):165–170

    Article  CAS  Google Scholar 

  72. Meena RP, Prabha K, Baranwal VK (2020) Development of RT-PCR degenerate primers for the detection of two mandariviruses infecting citrus cultivars in India. Journal of virological methods, 275, p.113753

  73. Menzel W, Knierim D, Winter S, Hamacher J, Heupel M (2019) First report of Tomato brown rugose fruit virus infecting tomato in Germany. New Dis Rep, 39(1), pp.2044 – 0588.

  74. Michalecka M, Bryk H, Poniatowska A, Puławska J (2016) Identification of Neofabraea species causing bull’s eye rot of apple in Poland and their direct detection in apple fruit using multiplex PCR. Plant Pathol 65(4):643–654

    Article  CAS  Google Scholar 

  75. Mohanty SP, Hughes DP, Salathé M (2016) Using deep learning for image-based plant disease detection. Front Plant Sci 7:1419

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ndayihanzamaso P, Karangwa P, Mostert D, Mahuku G, Blomme G, Beed F, Swennen R, Viljoen A (2020) The development of a multiplex PCR assay for the detection of Fusarium oxysporum f. sp. cubense lineage VI strains in East and Central Africa. Eur J Plant Pathol 158(2):495–509

    Article  CAS  Google Scholar 

  77. Okiro LA, Tancos MA, Nyanjom SG, Smart CD, Parker ML (2019) Comparative evaluation of LAMP, qPCR, conventional PCR, and ELISA to detect Ralstonia solanacearum in kenyan potato fields. Plant Dis 103(5):959–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Orillo JW, Cruz JD, Agapito L, Satimbre PJ, Valenzuela I (2014) November. Identification of diseases in rice plant (oryza sativa) using back propagation Artificial Neural Network. In 2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1–6). IEEE

  79. Palacio-Bielsa A, Cambra MA, López MM (2009) PCR detection and identification of plant-pathogenic bacteria: updated review of protocols (1989–2007). Journal of Plant Pathology, pp.249–297

  80. Pan TT, Chyngyz E, Sun DW, Paliwal J, Pu H (2019) Pathogenetic process monitoring and early detection of pear black spot disease caused by Alternaria alternata using hyperspectral imaging. Postharvest Biol Technol 154:96–104

    Article  Google Scholar 

  81. Panferov VG, Safenkova IV, Zherdev AV, Dzantiev BB (2020) Urchin peroxidase-mimicking Au@ Pt nanoparticles as a label in lateral flow immunoassay: impact of nanoparticle composition on detection limit of Clavibacter michiganensis. Microchimica Acta, 187(5), p.268

  82. Patel R, Mitra B, Vinchurkar M, Adami A, Patkar R, Giacomozzi F, Lorenzelli L, Baghini MS (2022) A review of recent advances in plant-pathogen detection systems. Heliyon, pe11855

  83. Patel R, Mitra B, Vinchurkar M, Adami A, Patkar R, Giacomozzi F, Lorenzelli L, Baghini MS (2023) Plant pathogenicity and associated/related detection systems. A review. Talanta, 251, p.123808

  84. Prosen D, Hatziloukas E, Schaad NW, Panopoulos NJ (1993) Specific detection of Pseudomonas syringae pv. Phaseolicola DNA in bean seed by polymerase chain reaction-based amplification of a phaseolotoxin gene region. Phytopathology 83(9):965–970

    Article  CAS  Google Scholar 

  85. Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR, Shahryari F, Safarpour H, Foroutan A, Mardi M, Davoudi D, Fotokian M (2012) Detection of Candidatus Phytoplasma aurantifolia with a quantum dots fret-based biosensor. J Plant Pathol, pp.525–534

  86. Razmi A, Golestanipour A, Nikkhah M, Bagheri A, Shamsbakhsh M, Malekzadeh-Shafaroudi S (2019) Localized surface plasmon resonance biosensing of tomato yellow leaf curl virus. J Virol Methods 267:1–7

    Article  CAS  PubMed  Google Scholar 

  87. Roohie RK, Umesha S (2012) Development of multiplex PCR for the specific detection of Xanthomonas campestris pv. campestris in cabbage and correlation with disease incidence. Journal of Plant Pathology and Microbiology, 3(127), p.2

  88. Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, Shahryari F, Hasanzadeh F (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34(4):507–515

    Article  Google Scholar 

  89. Saleem M, Atta BM, Ali Z, Bilal M (2020) Laser-induced fluorescence spectroscopy for early disease detection in grapefruit plants. Photochem Photobiol Sci 19(5):713–721

    Article  CAS  PubMed  Google Scholar 

  90. Sánchez E, Ali Z, Islam T, Mahfouz M (2022) A CRISPR-based lateral flow assay for plant genotyping and pathogen diagnostics. Plant Biotechnol J 20(12):2418–2429

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sanchez L, Pant S, Xing Z, Mandadi K, Kurouski D (2019) Rapid and noninvasive diagnostics of Huanglongbing and nutrient deficits on citrus trees with a handheld Raman spectrometer. Anal Bioanal Chem 411:3125–3133

    Article  CAS  PubMed  Google Scholar 

  92. Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72(1):1–13

    Article  Google Scholar 

  93. Schaad NW, Cheong SS, Tamaki S, Hatziloukas E, Panopoulos NJ (1995) A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. Phaseolicola in bean seed extracts. Phytopathology 85(2):243–246

    Article  CAS  Google Scholar 

  94. Schaad NW, Frederick RD (2002) Real-time PCR and its application for rapid plant clardisease diagnostics. Can J Plant Pathol 24(3):250–258

    Article  CAS  Google Scholar 

  95. Schaad NW, Berthier-Schaad Y, Sechler A, Knorr D (1999) Detection of Clavibacter michiganensis subsp. sepedonicus in potato tubers by BIO-PCR and an automated real-time fluorescence detection system. Plant Dis 83(12):1095–1100

    Article  CAS  PubMed  Google Scholar 

  96. Schaad NW, Opgenorth D, Gaush P (2002) Real-time polymerase chain reaction for one-hour on-site diagnosis of Pierce’s disease of grape in early season asymptomatic vines. Phytopathology 92(7):721–728

    Article  CAS  PubMed  Google Scholar 

  97. Seepiban C, Charoenvilaisiri S, Warin N, Bhunchoth A, Phironrit N, Phuangrat B, Chatchawankanphanich O, Attathom S, Gajanandana O (2017) Development and application of triple antibody sandwich enzyme-linked immunosorbent assays for begomovirus detection using monoclonal antibodies against Tomato yellow leaf curl Thailand virus. Virology Journal, 14(1), pp.1–14

  98. Selvarajan R, Kanichelvam PS, Balasubramanian V, Subramanian SS (2020) A rapid and sensitive lateral flow immunoassay (LFIA) test for the on-site detection of banana bract mosaic virus in banana plants. Journal of Virological Methods, 284, p.113929

  99. Shruthi U, Nagaveni V, Raghavendra BK (2019) March. A review on machine learning classification techniques for plant disease detection. In 2019 5th International conference on advanced computing & communication systems (ICACCS) (pp. 281–284). IEEE

  100. Shu R, Yin X, Long Y, Yuan J, Zhou H (2022) Detection and control of Pantoea agglomerans causing plum bacterial shot-hole disease by loop-mediated isothermal amplification technique. Frontiers in microbiology, 13

  101. Si Ammour M, Bilodeau GJ, Tremblay DM, Van der Heyden H, Yaseen T, Varvaro L, Carisse O (2017) Development of real-time isothermal amplification assays for on-site detection of Phytophthora infestans in potato leaves. Plant Dis 101(7):1269–1277

    Article  PubMed  Google Scholar 

  102. Singh D, Jain N, Jain P, Kayal P, Kumawat S, Batra N (2020) PlantDoc: A dataset for visual plant disease detection. In Proceedings of the 7th ACM IKDD CoDS and 25th COMAD (pp. 249–253)

  103. Skottrup PD, Nicolaisen M, Justesen AF (2008) Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron 24(3):339–348

    Article  CAS  PubMed  Google Scholar 

  104. Song C, Wang Y, Lei Y, Zhao J (2022) SERS-Enabled sensitive detection of Plant Volatile Biomarker Methyl Salicylate. J Phys Chem C 126(1):772–778

    Article  CAS  Google Scholar 

  105. Stulberg MJ, Shao J, Huang Q (2015) A multiplex PCR assay to detect and differentiate select agent strains of Ralstonia solanacearum. Plant Dis 99(3):333–341

    Article  PubMed  Google Scholar 

  106. Sun B, Chen Q, He X, Shi Y, Ding S, Li H (2018) A new multiplex polymerase chain reaction assay for simultaneous detection of five soil-borne fungal pathogens in winter wheat. J Plant Dis Prot 125(3):319–324

    Article  Google Scholar 

  107. Tewari S, Sharma S (2019) Molecular techniques for diagnosis of bacterial plant pathogens. Microbial diversity in the genomic era. Academic Press, pp 481–497

  108. Thangavelu RM, Kadirvel N, Balasubramaniam P, Viswanathan R (2022) Ultrasensitive nano-gold labelled, duplex lateral flow immunochromatographic assay for early detection of sugarcane mosaic viruses. Sci Rep 12(1):4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Thind BS (2015) Diagnosis and management of bacterial plant diseases. Recent advances in the diagnosis and management of plant diseases, pp.101–117

  110. Thorat AS, Pal RK, Shingote P, Kharte SB, Nalavade VM, Dhumale DR, Pawar BH, Babu KH (2015) Detection of sugarcane mosaic virus in diseased sugarcane using ELISA and RT-PCR technique. J Pure Appl Microbiol 9(1):319–327

    CAS  Google Scholar 

  111. Tiwari V, Joshi RC, Dutta MK (2021) Dense convolutional neural networks based multiclass plant disease detection and classification using leaf images. Ecological Informatics, 63, p.101289

  112. Tm P, Pranathi A, SaiAshritha K, Chittaragi NB, Koolagudi SG (2018) August. Tomato leaf disease detection using convolutional neural networks. In 2018 eleventh international conference on contemporary computing (IC3) (pp. 1–5). IEEE

  113. Uda MNA, Hasfalina CM, Samsuzanaa AA, Faridah S, Gopinath SC, Parmin NA, Hashim U, Mat M (2019) A disposable biosensor based on antibody-antigen interaction for tungro disease detection. Nanobiosensors for Biomolecular Targeting. Elsevier, pp 147–164

  114. Uke A, Khin S, Kobayashi K, Satou T, Kim OK, Hoat TX, Natsuaki KT, Ugaki M (2022) Detection of Sri Lankan cassava mosaic virus by loop-mediated isothermal amplification using dried reagents. Journal of virological methods, 299, p.114336

  115. Umesha S, Avinash P (2015) Multiplex PCR for simultaneous identification of Ralstonia solanacearum and Xanthomonas perforans. 3 Biotech 5(3):245–252

    Article  CAS  PubMed  Google Scholar 

  116. Vetal S, Khule RS (2017) Tomato plant disease detection using image processing. Int J Adv Res Comput Communication Eng 6(6):293–297

    Article  Google Scholar 

  117. Wang L, Poque S, Valkonen JP (2019) Phenotyping viral infection in sweetpotato using a high-throughput chlorophyll fluorescence and thermal imaging platform. Plant Methods 15:1–14

    Article  Google Scholar 

  118. Wei T, Lu G, Clover G (2008) Novel approaches to mitigate primer interaction and eliminate inhibitors in multiplex PCR, demonstrated using an assay for detection of three strawberry viruses. J Virol Methods 151(1):132–139

    Article  CAS  PubMed  Google Scholar 

  119. Weller SA, Elphinstone JG, Smith NC, Boonham N, Stead D (2000) Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Appl Environ Microbiol 66(7):2853–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Weng S, Hu X, Wang J, Tang L, Li P, Zheng S, Zheng L, Huang L, Xin Z (2021) Advanced application of Raman spectroscopy and surface-enhanced Raman spectroscopy in plant disease diagnostics: a review. J Agric Food Chem 69(10):2950–2964

    Article  CAS  PubMed  Google Scholar 

  121. Xue B, Shang J, Yang J, Zhang L, Du J, Yu L, Yang W, Naeem M (2021) Development of a multiplex RT-PCR assay for the detection of soybean mosaic virus, bean common mosaic virus and cucumber mosaic virus in field samples of soybean. Journal of Virological Methods, 298, p.114278

  122. Yang X, Hameed U, Zhang AF, Zang HY, Gu CY, Chen Y, Xu YL (2017) Development of a nested-PCR assay for the rapid detection of Pilidiella granati in pomegranate fruit. Scientific reports, 7(1), p.40954

  123. Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Advanced materials research, vol 79. Trans Tech Publications Ltd, pp 513–516

  124. Zarco-Tejada PJ, Camino C, Beck PSA, Calderon R, Hornero A, Hernández-Clemente R, Kattenborn T, Montes-Borrego M, Susca L, Morelli M, Gonzalez-Dugo V (2018) Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat Plants 4(7):432–439

    Article  CAS  PubMed  Google Scholar 

  125. Zhang C, Feng X, Wang J, Liu F, He Y, Zhou W (2017) Mid-infrared spectroscopy combined with chemometrics to detect Sclerotinia stem rot on oilseed rape (Brassica napus L.) leaves. Plant Methods 13(1):1–9

    Article  Google Scholar 

  126. Zhao W, Lu J, Ma W, Xu C, Kuang H, Zhu S (2011) Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor. Biosens Bioelectron 26(10):4241–4244

    Article  CAS  PubMed  Google Scholar 

  127. Zhen LIU, SUNZHU YJ, ZHOU XP, Jian HONG, WU JX (2017) Monoclonal antibody-based serological detection of Citrus yellow vein clearing virus in citrus groves. J Integr Agric 16(4):884–891

    Article  Google Scholar 

  128. Zhenyan C, Yihua Y, Yang S, Xuping S, Xiaoping Y (2021) Simultaneous detection of four pathogens in Dendrobium officinale by nested multiplex PCR assay. Crop Protection, 140, p.105445

  129. Zhou-qi C, Bo ZHU, Guan-lin X, Bin L, Shi-wen H (2016) Research status and prospect of Burkholderia glumae, the pathogen causing bacterial panicle blight. Rice Sci 23(3):111–118

    Article  Google Scholar 

  130. Zhu G, Yin X, Jin D, Zhang B, Gu Y, An Y (2019) Based immunosensors: current trends in the types and applied detection techniques. TRAC Trends Anal Chem 111:100–117

    Article  CAS  Google Scholar 

Download references

Funding

Authors declare that no funds, grants or other support were received during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Author SA wrote the manuscript text and prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Srividya Attaluri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attaluri, S., Dharavath, R. Novel plant disease detection techniques-a brief review. Mol Biol Rep 50, 9677–9690 (2023). https://doi.org/10.1007/s11033-023-08838-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08838-y

Keywords

Navigation